J.-E. Bäckvall et al.
FULL PAPER
phyrin 12 (1.14 g, 0.981 mmol) and potassium thioacetate (671 mg,
5.88 mmol) were dissolved in 50 mL dry THF and the mixture was
refluxed for 40 hours. After cooling to ambient temperature, the
reaction mixture was filtered and the solvent was evaporated in
vacuo. The porphyrin was dissolved in 50 mL dichloromethane and
washed two times with 75 mL water. The organic layer was dried
with sodium sulfate, filtered and the evaporated to dryness. The
product was purified using column chromatography (silica, dichlo-
romethane) to yield porphyrin 2 (0.76 mmol, 0.87 g, 78%). 1H
NMR (300 MHz): δ = 8.92 (s, 8 H), 7.84 (d, 4 H, J = 7.8 Hz), 7.79
(s, 4 H), 7.65 (t, 4 H, J = 7.8 Hz), 7.33 (d, 4 H, J = 8.1 Hz), 4.22
(t, 8 H, J = 6.0 Hz), 3.14 (t, 8 H, J = 7.2 Hz), 2.32 (s, 12 H), 2.17
(m, 8 H), –2.78 (s, 2 H). 13C NMR (75.4 MHz): δ = 195.9, 157.4,
143.7, 132.2–130.7, 128.1, 127.8, 121.4, 120.1, 114.4, 66.7, 30.9,
29.7, 26.2. UV (CH2Cl2): λabs = 418, 514, 549, 589, 646 nm.
Acknowledgments
Financial support from the Swedish Foundation for Strategic Re-
search is gratefully acknowledged. We thank Prof. Ulrik Gelius and
Hans Lidbaum for assistance in the XPS measurements and for
helpful discussions.
[1] a) “Modern Oxidation Methods” (Ed. J. E. Bäckvall, Wiley-
VCH), 2004; b) G. W. Parshall, Homogeneuos Catalysis; Wiley-
Interscience: New York, 1980; c) R. A. Sheldon, J. K. Koichi,
Metal-Catalyzed Oxidation of Organic Compounds; Academic
Press: New York, 1981; d) M. Hudlický, Oxidation in Organic
Chemistry ACS Monograph 186; American Chemical Society:
Washington, DC, 1909.
[2] M. N. Huges, The Inorganic Chemistry of Biological Processes;
Wiley: Chichester, UK, 1981.
5,10,15,20-Tetrakis[3-(3-bromopropoxy)phenyl]porphyrin (12): Pre-
pared according to the general porphyrin synthesis from pyrrole
(1,50 mL, 21.6 mmol) and 10 (5,25 g, 21.6 mmol) to give 12 (1.55 g,
[3] G. Strukul, Catalytic Oxidations with Hydrogen Peroxide as
Oxidant, Kluwer: Dordrecht, The Netherlands, 1992.
[4] a) I. Tabushi, N. Koga, J. Am. Chem. Soc. 1979, 101, 6456–
6458; b) J. T. Groves, R. J. Quinn, J. Am. Chem. Soc. 1985, 107,
5790–5792; c) M. Perrée-Fauvet, A. Gaudemer, J. Chem. Soc.,
Chem. Commun. 1981, 874–875; d) D. Mansuy, M. Fontecave,
J.-F. Bartoli, J. Chem. Soc., Chem. Commun. 1983, 253–254; e)
J.-P. Renaud, J.-F. Battioni, D. Mansuy, J. Chem. Soc., Chem.
Commun. 1985, 888–889; f) J. T. Groves, W. J. Kruper, R. C.
Haushalter, J. Am. Chem. Soc. 1980, 102, 6375–6377; g) C. L.
Hill, B. C. Schardt, J. Am. Chem. Soc. 1980, 102, 6374–6375;
h) J. T. Groves, T. E. Nemo, R. S. Myers, J. Am. Chem. Soc.
1979, 101, 1032–1033; i) J.-E. Bäckvall, A. K. Awasthi, Z. D.
Renko, J. Am. Chem. Soc. 1987, 109, 4750–4752; j) J.-E.
Bäckvall, R. B. Hopkins, Tetrahedron Lett. 1988, 29, 2885–
2888.
[5] E. Guilmet, B. Meunier, Tetrahedron Lett. 1980, 21, 4449–4450.
[6] a) J.-E. Bäckvall, R. B. Hopkins, H. Grennberg, M. M. Mader,
A. K. Awasthi, J. Am. Chem. Soc. 1990, 112, 5160–5166; b) J.-
E. Bäckvall, R. L. Chowdhury, U. Karlsson, J. Chem. Soc.,
Chem. Commun. 1991, 473–475; c) G. Csjernyik, A. H. Éll, L.
Fadini, B. Pugin, J.-E. Bäckvall, J. Org. Chem. 2002, 67, 1657–
1662.
1
1.33 mmol, 25%). H NMR (300 MHz): δ = 8.90 (s, 8 H), 7.84 (d,
4 H, J = 7.8 Hz), 7.79 (s, 4 H), 7.65 (t, 4 H, J = 7.8 Hz), 7.34 (d,
4 H, J = 8.1 Hz), 4.30 (t, 8 H, J = 6.3 Hz), 3.68 (t, 8 H, J = 6.3 Hz),
2.41 (m, 8 H), –2.80 (s, 2 H). 13C NMR (75.4 MHz): δ = 157.3,
143.7, 131.8–130.5, 128.1, 127.8, 121.4, 120.0, 114.3, 65.8, 32.8,
30.2. UV (CH2Cl2): λabs = 419, 514, 551, 591, 646 nm.
5,10,15,20-Tetrakis[4-(5-thioacetoxypentyl)phenyl]porphyrincobalt-
(II) (1-Co). General Procedure: Porphyrin 1 (119 mg, 0.1 mmol) was
dissolved in 20 mL of a 4:1 mixture of CH2Cl2 and MeOH under
argon atmosphere. Co(OAc)2·4H2O (30.6 mg, 0.12 mmol) was
added and the resulting reaction mixture was refluxed for 2 h. The
formation of 1-Co was confirmed by UV spectroscopy. Yield:
112 mg, 98%. UV (CH2Cl2): λabs = 412, 530 nm.
5,10,15,20-Tetrakis[3-(3-thioacetoxypropoxy)phenyl]porphyrin-
cobalt(II) (2-Co): Prepared according to the general procedure from
114 mg (0.1 mmol) of porphyrin 2 and 30.6 mg (0.12 mmol) of Co-
(OAc)2·4H2O in 20 mL of 4:1 mixture of CH2Cl2 and MeOH to
give 117 mg (98%) of 2-Co. UV (CH2Cl2): λabs = 410, 529 nm.
[7] a) H. Grennberg, S. Faizon, J.-E. Bäckvall, Angew. Chem. 1993,
105, 269–271; Angew. Chem. Int. Ed. Engl. 1993, 32, 263–264;
b) H. Grennberg, J.-E. Bäckvall, J. Chem. Soc., Chem. Com-
mun. 1993, 1331–1332; c) R. C. Verboom, V. F. Slagt, J.-E.
Bäckvall, Chem. Commun. 2005, 1282–1284.
[8] R. A. Sheldon (Ed.), Metalloporphyrins in Catalytic Oxi-
dations, Marcel Dekker, New York, 1994.
Immobilization of 2-Co on a Gold Surface: The evaporated gold
substrates on Si wafers were cleaned in Piranha solution
[H2SO4:H2O2 (30% aq.), 2:1] and rinsed with ultra pure water prior
to molecular deposition. The Au surface was checked for remaining
contaminants by means of XPS. A solution of 0.5 m 2-Co in N,N-
dimethylformamide (DMF) was prepared. Deprotection of the S-
acetyl groups was performed by adding 40 molar excess of HCl.
After an initial reaction time in the order of 2 hours for the depro-
tection to take place, the Au surface was immersed in the molecular
solution for typically 20 hours. Then the sample was rinsed with
DMF, soaked for 10–20 minutes in DMF, rinsed again with DMF
and afterwards with ultra-pure water and finally blow dried in ar-
gon. The immobilization was confirmed by XPS.
[9] E. Pavlovic, A. P. Quist, U. Gelius, L. Nyholm, S. Oscarsson,
Langmuir 2003, 19, 4217–4221.
[10] a) P. Battioni, J. F. Bartoli, D. Mansuy, Y. S. Byun, T. G.
Traylor, J. Chem. Soc., Chem. Commun. 1991, 1051–1153; b)
F. L. Beneditoa, S. Nakagaki, A. A. Saczka, G. P. Peralta-Za-
morab, C. M. Macedo Costa, Appl. Catal. A 2003, 250, 1–11;
c) M. A. Schiavon, Y. Iamamoto, O. R. Nascimento, M. D.
Assis, J. Mol. Catal. A: Chem. 2001, 174, 213–222.
[11] a) B. Meunier, Chem. Rev. 1992, 92, 1411–1456; b) J. P.
Collman, X. M. Zhang, V. J. Lee, E. S. Uffelman, J. I. Brau-
man, Science 1993, 261, 1404–1408; c) D. Mansuy, Coord.
Chem. Rev. 1993, 125, 129–141; d) F. Bedioui, J. Devynick, C.
Bied-Charreton, Acc. Chem. Res. 1995, 28, 30–36; e) X.-Q. Yu,
J.-S. Huang, W.-Y. Yu, C.-M. Che, J. Am. Chem. Soc. 2000,
122, 5337–5342.
[12] a) A. Ulman, An Introduction to Ultrathin Organic Films: From
Langmuir-Blodgett to Self-Assembly; Academic Press: Boston,
MA, 1997; b) T. A. Postlethwaite, J. E. Hutchison, K. W.
Hathcock, R. W. Murray, Langmuir 1995, 11, 4109–4116; c) T.
Kondo, T. Ito, S. Nomura, K. Uosaki, Thin Solid Films 1996,
284–285, 652–655; d) T. R. E. Simpson, M. J. Cook, M. C.
Petty, S. C. Thorpe, D. A. Russell, Analyst 1996, 121, 1501–
1505; e) T. R. E. Simpson, D. J. Revell, M. J. Cook, D. A. Rus-
Surface Coverage Estimation by XPS: The coverage has been calcu-
lated by comparing the intensity of the N1s signal to the intensity
of the Au4f signal according to ref.[21] Standard cross sections have
been used for the calculation. The calculated coverage is 0.67 mol-
cules/nm2. This corresponds to an area of 150 Å2 per molecule.
This result fits very well to the size of a single porphyrin and corre-
sponds therefore to a full monolayer.
Supplementary Information (see footnote on the first page of this
1
article): General procedures. Copies of H and 13C NMR spectra
of compounds 1, 2, 5, 7, 10, 11, and 12. This material is available
author.
1198
www.eurjoc.org
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2006, 1193–1199