Organic Letters
Letter
2672. (d) Clark, A. D.; Ha, U. T.; Prager, R. H.; Smith, J. A. Aust. J.
Chem. 1999, 52, 1029−1033. (e) Clark, A. D.; Janowski, W. K.;
Prager, R. H. Tetrahedron 1999, 55, 3637−3648. (f) Cox, M.;
Heidarizadeh, F.; Prager, R. H. Aust. J. Chem. 2000, 53, 665−671.
(g) Cox, M.; Prager, R. H.; Riessen, D. M. Arkivoc 2001, 20, 88−103.
(h) Cox, M.; Dixon, M.; Lister, T.; Prager, R. H. Aust. J. Chem. 2004,
57, 455−460. (i) Abel, S.-A. G.; Eglinton, M. O.; Howard, J. K.; Hunt,
D. J.; Prager, R. H.; Smith, J. A. Aust. J. Chem. 2014, 67, 1228−1233.
(5) (a) Okamoto, K.; Oda, T.; Kohigashi, S.; Ohe, K. Angew. Chem.,
Int. Ed. 2011, 50, 11470−11473. (b) Okamoto, K.; Shimbayashi, T.;
Tamura, E.; Ohe, K. Chem. - Eur. J. 2014, 20, 1490−1494.
(c) Rieckhoff, S.; Hellmuth, T.; Peters, R. J. Org. Chem. 2015, 80,
6822−6830. (d) Okamoto, K.; Shimbayashi, T.; Yoshida, M.; Nanya,
A.; Ohe, K. Angew. Chem., Int. Ed. 2016, 55, 7199−7202.
(e) Rieckhoff, S.; Titze, M.; Frey, W.; Peters, R. Org. Lett. 2017,
19, 4436−4439. (f) Rieckhoff, S.; Frey, W.; Peters, R. Eur. J. Org.
Chem. 2018, 2018, 1797−1805. (g) Shimbayashi, T.; Matsushita, G.;
Nanya, A.; Eguchi, A.; Okamoto, K.; Ohe, K. ACS Catal. 2018, 8,
7773−7780.
nucleophilic attack of the resulting carboxylate J to iminium
ion F, and cyclization also afford the desired 1,3-oxazin-6-one
3a (path b). Because carboxylate J is a more stable anion than
G and the conversion of the carboxyl OH to a good leaving
group is more common in organic synthesis, path b is probably
a major route to form 3a. As shown in Table 1, entry 19, the
use of 1,4-dihydropyridine (DHP) is essentially ineffective for
the reaction because its oxidation product pyridine is stable to
intermediate G. Therefore, we assume that NEt3 plays a
threefold role for the formation of 1,3-oxazin-6-ones: (1) as an
electron donor; (2) as a hydrogen donor; and (3) as the
precursor of the iminium ion to promote the cyclization.
In conclusion, we have developed a mild and convenient
approach to oxazoles and 1,3-oxazin-6-ones via visible-light-
promoted decarboxylative and nondecarboxylative rearrange-
ment of isoxazol-5-ones, respectively. The photocatalyst-
controlled divergent mechanisms, namely oxidative and
reductive quenching catalytic cycle, are utilized, and various
oxazoles and 1,3-oxazin-6-ones are selectively obtained from
the same isoxazol-5-one skeleton. Since isoxazol-5-ones are
readily prepared from β-keto esters and their equivalents,20
such a catalyst-controllable methodology is an important
addition to those previous reports on diversity-oriented
synthesis of N-heterocycles.
(6) For a review see: (a) Zard, S. Z. Chem. Commun. 2002, 1555−
1563. For selected examples, see: (b) Jurberg, I. D. Chem. - Eur. J.
2017, 23, 9716−9720. (c) Capreti, N. M. R.; Jurberg, I. D. Org. Lett.
́
2015, 17, 2490−2493. (d) Huppe, S.; Rezaei, H.; Zard, Z. S. Chem.
Commun. 2001, 1894−1895. (e) Dias-Jurberg, I.; Gagosz, F.; Zard, S.
Z. Org. Lett. 2010, 12, 416−419. (f) Boivin, J.; Elkaim, L.; Ferro, P.
G.; Zard, S. Z. Tetrahedron Lett. 1991, 32, 5321−5324.
(7) Too, P. C.; Wang, Y.-F.; Chiba, S. Org. Lett. 2010, 12, 5688−
5691.
ASSOCIATED CONTENT
* Supporting Information
■
(8) Murarka, S. Adv. Synth. Catal. 2018, 360, 1735−1753.
(9) (a) Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M. J.
Am. Chem. Soc. 1991, 113, 9401−9402. (b) Schnermann, M. J.;
Overman, L. E. Angew. Chem., Int. Ed. 2012, 51, 9576−9580.
(c) Pratsch, G.; Lackner, G. L.; Overman, L. E. J. Org. Chem. 2015,
80, 6025−6036. (d) Hu, C.; Chen, Y. Org. Chem. Front. 2015, 2,
1352−1355. (e) Yang, J.; Zhang, J.; Qi, L.; Hu, C.; Chen, Y. Chem.
Commun. 2015, 51, 5275−5278. (f) Schwarz, J.; Konig, B. Green
Chem. 2016, 18, 4743−4749. (g) Jiang, M.; Yang, H.; Fu, H. Org. Lett.
2016, 18, 1968−1971. (h) Xu, K.; Tan, Z.; Zhang, H.; Liu, J.; Zhang,
S.; Wang, Z. Chem. Commun. 2017, 53, 10719−10722.
S
The Supporting Information is available free of charge on the
Experimental details, characterization data, NMR spectra
of all new products (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(10) (a) Tlahuext-Aca, A.; Garza-Sanchez, R. A.; Glorius, F. Angew.
Chem., Int. Ed. 2017, 56, 3708−3711. (b) Sha, W.; Ni, S.; Han, J.;
Pan, Y. Org. Lett. 2017, 19, 5900−5903. (c) Zhang, J.-J.; Yang, J.-C.;
Guo, L.-N.; Duan, X.-H. Chem. - Eur. J. 2017, 23, 10259−10263.
(d) Zhao, Y.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2018, 20, 224−227.
(e) Kong, W.; Yu, C.; An, H.; Song, Q. Org. Lett. 2018, 20, 349−352.
(f) Cheng, W.-M.; Shang, R.; Fu, Y. ACS Catal. 2017, 7, 907−911.
(11) (a) Jin, Z.; Li, Z.; Huang, R. Nat. Prod. Rep. 2002, 19, 454−476.
(b) Lewis, J. R. Nat. Prod. Rep. 2002, 19, 223−258. (c) Jin, Z. Nat.
Prod. Rep. 2011, 28, 1143−1191. (d) Momose, Y.; Maekawa, T.;
Yamano, T.; Kawada, M.; Odaka, H.; Ikeda, H.; Sohda, T. J. Med.
Chem. 2002, 45, 1518−1534. (e) Giddens, A. C.; Boshoff, H. I. M.;
Franzblau, S. G.; Barry, C. E., III; Copp, B. R. Tetrahedron Lett. 2005,
46, 7355−7357.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for the funds from the National Basic Research
Program of China (Grant 2016YFA0602900), the National
Natural Science Foundation of China (Grant No. 21871300),
and the Natural Science Funds of Guangdong Province for
Distinguished Young Scholars (Grant 2016A030306029).
(12) (a) Jarvest, R. L.; Parratt, M. J.; Debouck, C. M.; Gorniak, J. G.;
Jennings, L. J.; Serafinowska, H. T.; Strickler, J. E. Bioorg. Med. Chem.
Lett. 1996, 6, 2463−2466. (b) Gu
Med. Chem. 1997, 5, 1935−1942. (c) Neumann, U.; Schechter, N. M.;
Gutschow, M. Bioorg. Med. Chem. 2001, 9, 947−954. (d) Kim, M. C.;
̈
tschow, M.; Neumann, U. Bioorg.
REFERENCES
■
̈
(1) da Silva, A. F.; Fernandes, A. A. G.; Thurow, S.; Stivanin, M. L.;
Jurberg, I. D. Synthesis 2018, 50, 2473−2489.
Lee, J. H.; Shin, B.; Subedi, L.; Cha, J. W.; Park, J.-S.; Oh, D.-C.; Kim,
S. Y.; Kwon, H. C. Org. Lett. 2015, 17, 5024−5027. (e) Fu, P.; La, S.;
MacMillan, J. B. J. Nat. Prod. 2016, 79, 455−462.
(2) (a) Wollweber, H.-J.; Wentrup, C. J. Org. Chem. 1985, 50,
2041−2047. (b) Woodcock, S.; Green, D. V. S.; Vincent, M. A.;
Hillier, I. H.; Guest, M. F.; Sherwood, P. J. Chem. Soc., Perkin Trans. 2
1992, 2151−2154. (c) Cramer, C. J.; Truhlar, D. G. J. Am. Chem. Soc.
1993, 115, 8810−8817.
(13) For reviews on the synthesis of oxazoles, see: (a) Yeh, V. S. C.
Tetrahedron 2004, 60, 11995−12042. (b) Bresciani, S.; Tomkinson,
N. C. O. Heterocycles 2014, 89, 2479−2453. (c) Ibrar, A.; Khan, I.;
Abbas, N.; Farooq, U.; Khan, A. RSC Adv. 2016, 6, 93016−93047.
(14) For selected examples on 1,3-oxazin-6-one synthesis, see:
(a) Chen, M.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Angew. Chem., Int.
Ed. 2013, 52, 14196−14199. (b) Liu, Q.; Chen, P.; Liu, G. ACS Catal.
2013, 3, 178−181. (c) Li, W.; Wu, X. F. J. Org. Chem. 2014, 79,
(3) Benson, S. W. J. Chem. Educ. 1965, 42, 502−518.
(4) (a) Prager, R. H.; Singh, Y. Tetrahedron 1993, 49, 8147−8158.
(b) Ang, K. H.; Prager, R. H.; Smith, J. A.; Weber, B.; Williams, C. M.
Tetrahedron Lett. 1996, 37, 675−678. (c) Prager, R. H.; Smith, J. A.;
Weber, B.; Williams, C. M. J. Chem. Soc., Perkin Trans. 1 1997, 2665−
E
Org. Lett. XXXX, XXX, XXX−XXX