tris(tert-butyl)phosphine gave, over 48 h at rt, a 60% yield of
lactam 17.
The two strategic bond formation modes (Fig. 1, a and b)
allow both (E)- and (Z)-3-methyleneoxindoles to be accessed
stereoselectively. Thus formation of bond a by palladium
catalysed cyclisation onto a proximate alkyne with anion
capture affords E-isomers16 whilst formation of bond b by
palladium catalysed cyclisation affords Z-isomers.
In summary, these preliminary results on the palladium
catalysed cyclisation–anion capture of carbamoyl chlorides
demonstrate that (Z)-3-methylene- and 3,3-disubstituted ox-
indoles can be accessed under mild conditions in high yields.
Further studies of these and related processes are in hand.
We thank the EPSRC, University of Leeds and Zeneca
Agrochemicals for support.
Scheme 2 Reagents and conditions: A = Pd(OAc)2 (10 mol%), tris(2-
furyl)phosphine (20 mol%), 1.1 equiv. Bu3SnY, toluene, 50 °C. All
reactions were complete within 5 min at 50 °C.
Notes and references
1 A. Madin, C. J. O’Donnell, T. Oh, D. W. Old, L. E. Overman and M. J.
Sharp, Angew. Chem., Int. Ed., 1999, 38, 2934.
2 T. D. Cushing, J. F. Sanz-Cervera and R. M. Williams, J. Am. Chem.
Soc., 1993, 115, 9323; T. D. Cushing, J. F. Sanz-Cervera and R. M.
Williams, J. Am. Chem. Soc., 1996, 118, 557.
3 S. Edmonson, S. J. Danishefsky, L. Sepp-Lorenzino and N. Rosen,
J. Am. Chem. Soc., 1999, 121, 2147.
4 P. R. Sebahar and R. M. Williams, J. Am. Chem. Soc., 2000, 122,
5666.
5 E. E. van Tamelen, J. P. Yardley, M. Miyano and W. B. Hinshaw, J. Am.
Chem. Soc., 1969, 91, 7333.
6 H. B. Rasmussen and J. K. MacLeod, J. Nat. Prod., 1997, 60, 1152.
7 A. Ashimori, T. Matsuura, L. E. Overman and D. J. Poon, J. Org. Chem.,
1993, 58, 6949; M. Ishikura, J. Chem. Soc., Chem. Commun., 1995, 409;
M. O. Terpko and R. F. Heck, J. Am. Chem. Soc., 1979, 101, 5281.
8 R. Grigg, J. M. Sansano, V. Santhakumar, V. Sridharan, R. Thangave-
lanthum, M. Thorton-Pett and D. Wilson, Tetrahedron, 1997, 53,
11 803; B. Burns, R. Grigg, V. Sridharan, P. Stevenson, S. Sukirtha-
lingam and T. Worakun, Tetrahedron Lett., 1989, 30, 1135.
9 R. Grigg, B. Putnikovic and C. J. Urch, Tetrahedron Lett., 1996, 37,
695.
10 B. Jousseaume, H. Kwon, J.-B. Verlhac, F. Denat and J. Dubac, Synlett,
1993, 2, 117; L. Balas, B. Jousseaume, H. Shin, J.-B. Verlhac and F.
Wallian, Organometallics, 1991, 10, 366.
11 F. Henin, J. Muzart and J. P. Pete, Tetrahedron Lett., 1996, 52, 6339.
12 R. Grigg and V. Sridharan, J. Organomet. Chem., 1999, 576, 65.
13 E-i. Negishi and T. Takahashi, J. Am. Chem. Soc., 1986, 108, 3402.
14 J. S. Norwick and S. Insaf, J. Am. Chem. Soc., 1997, 119, 10 903; R.
Milcent and G. Barbier, J. Heterocyclic Chem., 1994, 31, 319 and
references therein.
Scheme 3 Reagents and conditions: A = Pd(OAc)2 (10 mol%), tris(2-
furyl)phosphine (20 mol%), 1.1 equiv. Bu3SnY, toluene, 50 °C, 5 min; B =
Pd(OAc)2 (10 mol%), tris(2-furyl)phosphine (20 mol%), 1.1 equiv.
Bu3SnY, toluene, 85 °C, 4 h; C = Pd(OAc)2 (10 mol%), triphenylphos-
phine (20 mol%), 2 equiv. PhB(OH)2, toluene, water (2 drops), 90 °C,
50 h.
(Scheme 3, C) there was some destruction of the carbamoyl
chloride 7.
The presence of the benzene ring in the above examples is
one factor promoting the rapid cyclisation of these carbamoyl
chlorides. To extend the scope of this cyclisation–anion capture
methodology, we synthesised an example of a non-aryl based
carbamoyl chloride. Substrate 16 was derived from but-3-yn-
1-ol via its tosylate and reacted with benzylamine and then
phosgene14 in the normal fashion. At the typical reaction
temperature of 50 °C, only 35% of product 17 was isolated.
However, replacing tris(2-furyl)phosphine by the electron rich
15 P. Fretwell, R. Grigg, J. M. Sansano, V. Sridharan, S. Sukirthalingam,
D. Wilson and J. Redpath, Tetrahedron, 2000, 56, 7525.
16 R. Grigg, V. Loganathan, V. Sridharan, P. Stevenson, S. Sukirthalingam
and T. Worakun, Tetrahedron, 1996, 52, 11479; R. Grigg and V. Savic,
Tetrahedron Lett., 1996, 37, 6565.
2240
Chem. Commun., 2000, 2239–2240