ORGANIC
LETTERS
2006
Vol. 8, No. 8
1589-1592
Higher Affinity Quadruply
Hydrogen-Bonded Complexation with
7-Deazaguanine Urea
Hugo C. Ong and Steven C. Zimmerman*
Department of Chemistry, 600 South Mathews AVenue,
UniVersity of Illinois, Urbana, Illinios 61801
Received January 22, 2006
ABSTRACT
UG forms a highly stable quadruply hydrogen-bonded heterocomplex with DAN, but the fidelity of the complex is lowered somewhat by the
-
Hoogsteen-side oligomerization of UG (Kassoc
∼
230 M 1, CDCl3). DeUG was prepared as a more robust analogue of UG lacking the Hoogsteen
nitrogen atom. Remarkably, the deaza analogue, DeUG, forms a much more stable complex with DAN (>10-fold higher Kassoc for DeUG
‚DAN
-
vs UG
‚DAN) but also dimerizes more strongly (Kdim
)
880
±
40 M 1, CDCl3) by adopting a conformation preorganized for both binding and
dimerization.
Recent efforts to expand the “supramolecular toolkit” have
focused on hydrogen-bonded complexes of tunable strength
in organic solvents.1 The quadruply hydrogen-bonded com-
plexes, in particular, are an attractive class as a result of their
high binding strengths and synthetic accessibility. Our DeAP
unit (1)2 and the Meijer-Sijbesma UPy unit (2)3 are
examples that dimerize strongly via AADD motifs (Figure
1). Both units also adopt an ADDA form (1′ and 2′) that
very tightly binds 2,7-diamido-1,8-naphthyridine (DAN, 3).2,4
Because 1 and 2 can present strongly self-associating AADD
hydrogen bonding arrays, the overall fidelity with which they
complex with 3 is lowered.5 We showed that in comparison
to 1 and 2, the AADD form of the UG unit 4 is much higher
in energy than the ADDA form so it complexes 3 with a
much higher fidelity. Thus, 4 tightly complexed 3 (Kassoc
∼
5 × 107 M-1, CHCl3) via form 4′ but did not dimerize
strongly via form 4′′.6 The UG‚DAN complex is well
optimized; however, two aspects of the UG unit make it less
than an ideal subunit. First, the UG weakly self-associates
(Kassoc ∼ 230 M-1) via oligomerization of form 4,6 the urea
group hydrogen bonding at the Hoogsteen side of the UG
(1) For reviews, see: (a) Krische, M. J.; Lehn, J.-M. Stuct. Bond. 2000,
96, 3-29. (b) Mele´ndez, R. E.; Carr, A. J.; Linton, B. R.; Hamilton, A. D.
Struct. Bond. 2000, 96, 31-61. (c) Zimmerman, S. C.; Corbin, P. S. Struct.
Bond. 2000, 96, 63-94. (d) Kato, T. Struct. Bond. 2000, 96, 95-146. (e)
Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem., Int. Ed. 2001,
40, 2382-2426. (f) Sherrington, D. C.; Taskinen, K. A. Chem. Soc. ReV.
2001, 30, 83-93. (g) Sijbesma, R. P.; Meijer, E. W. Chem. Commun. 2003,
5-16. (h) Sivakova, S.; Rowan, S. J. Chem. Soc. ReV. 2005, 34, 9-21. (i)
Sessler, J. L.; Jayawickramarajah, J. Chem. Commun. 2005, 1939-1949.
(2) (a) Corbin, P. S.; Zimmerman, S. C. J. Am. Chem. Soc. 1998, 120,
9710-9711. (b) Corbin, P. S.; Lawless, L. J.; Li, Z.-T.; Ma, Y.; Witmer,
M. J.; Zimmerman, S. C. Proc. Nat. Acad. Sci. U.S.A. 2002, 99, 5099-
5104.
(4) (a) Wang, X.-Z.; Li, X.-Q.; Shao, X.-B.; Zhao, X.; Deng, P.; Jiang,
X.-K.; Li, Z.-T.; Chen, Y.-Q. Chem. Eur. J. 2003, 9, 2904-2913. (b)
Ligthart, G. B. W. L.; Ohkawa, H.; Sijbesma, R. P.; Meijer, E. W. J. Am.
Chem. Soc. 2005, 127, 810-811.
(5) Todd, E. M.; Quinn, J. R.; Park, T.; Zimmerman, S. C. Isr. J. Chem.
2005, 45, 381-389.
(6) (a) Park, T.; Zimmerman, S. C.; Nakashima, S. J. Am. Chem. Soc.
2005, 127, 6520-6521. (b) Park, T.; Todd, E. M.; Nakashima, S.;
Zimmerman, S. C. J. Am. Chem. Soc. 2005, 127, 18133-18142.
(3) Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.;
Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W.
Science 1997, 278, 1601-1604.
10.1021/ol0601803 CCC: $33.50
© 2006 American Chemical Society
Published on Web 03/25/2006