C O M M U N I C A T I O N S
Figure 2. Molecular structure of 2a (left) and 2d (middle) at 30% probability ellipsoids. Overlay (right) of the cores of 2a (dashed) and 2d (solid).
dicarbonyl complex, 1-(CO)2.12 Similar observations have been
reported for other ferric,7 cobalt,19 and nickel imides.20 In more
unique chemistry, exposure of benzene-d6 solutions of 2a-2c to 1
atm of H2 at 23 °C resulted in hydrogenation of the FedNAr linkage
to yield the iron dihydrogen complex, 1-H2, along with free aniline
(eq 2).
2,4,6-Me3-C6H2N3, suggests N-H reductive coupling as the rate-
determining step21 although additional kinetic and mechanistic
experiments must be performed to support this conclusion. The
combined synthetic, spectroscopic, and structural studies described
here once again highlight the “redox non-innocence”17 of the bis-
(imino)pyridine ligand and its importance in stabilizing catalytically
active iron centers.12
Acknowledgment. We thank the Packard Foundation for
financial support. P.J.C. is a Cottrell Scholar supported by the
Research Corporation. Professor Karl Wieghardt is also acknowl-
edged for helpful discussions.
Supporting Information Available: Experimental procedures and
crystallographic data for 2a and 2d. This material is available free of
Because 1-H2 rapidly converts to 1-(N2)2 upon exposure to N2,
1-(N2)2 seemed an ideal candidate for the catalytic hydrogenation
of aryl azides to the corresponding anilines. To further explore this
possibility, addition of each of the anilines to 1-(N2)2 under either
N2 or vacuum at 23 °C produced no reaction, demonstrating that
product inhibition would not be a limitation for catalytic turnover.
Gratifyingly, hydrogenation of the series of aryl azides used to
prepare 2a-2c at 23 °C and 1 atm of H2 in the presence of 10 mol
% (unoptimized) of 1-(N2)2 yielded the desired anilines in quantita-
tive yield (eq 3). Notably, the relative rates of catalytic hydrogena-
tion increased as the size of the aryl azide substituents closest to
the iron increased. Thus, 2,6-iPr2-C6H3N3 was the fastest in the
series, reaching completion in 6 h at 23 °C, while 2,6-Et2-C6H3N3
was the slowest, hydrogenating over the course of 96 h at 65 °C.
2,5-tBu2-C6H3N3 proceeded at an intermediate rate, requiring 16 h
for complete conversion at 65 °C. No catalytic hydrogenation of
2,4,6-Me3-C6H2N3 was observed, even upon heating to 65 °C for
24 h.
References
(1) Eikey, R. A.; Abu-Omar, M. M. Coord. Chem. ReV. 2003, 243, 83.
(2) (a) Pohl, K.; Wieghardt, K.; Kaim, W.; Steenken, S. Inorg. Chem. 1988,
27, 440. (b) Eckert, N. A.; Smith, J. M.; Lachicotte, R. J.; Holland, P. A.
Inorg. Chem. 2004, 43, 3306. (c) Fox, D. J.; Bergman, R. G. J. Am. Chem.
Soc. 2003, 125, 8984.
(3) (a) Meyer, K.; Bill, E.; Weyermuller, T.; Wieghardt, K. J. Am. Chem.
Soc. 1999, 121, 4859. (b) Bennett, M. V.; Stoian, S.; Bominaar, E. L.;
Munck, E.; Holm, R. H. J. Am. Chem. Soc. 2005, 127, 12378.
(4) (a) Dos Santos, P. C.; Igarashi, R. Y.; Lee, H. I.; Hoffman, B. M.; Seefeldt,
L. C.; Dean, D. R. Acc. Chem. Res. 2005, 38, 208. (b) Schrock, R. R.
Acc. Chem. Res. 2005, 38, 955.
(5) Verma, A. K.; Nazif, T. F.; Achim, C.; Lee, S. C. J. Am. Chem. Soc.
2000, 122, 11013.
(6) Brown, S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003, 125,
322.
(7) Brown, S. D.; Peters, J. C. J. Am. Chem. Soc. 2005, 127, 1913.
(8) Brown, S. D.; Peters, J. C. J. Am. Chem. Soc. 2004, 127, 4538.
(9) Brown, S. D.; Mehn, M. P.; Peters, J. C. J. Am. Chem. Soc. 2005, 127,
13146.
(10) Lucas, R. L.; Powell, D. R.; Borovik, A. S. J. Am. Chem. Soc. 2005, 127,
11596.
(11) For examples with Pd/C see: (a) Giuliana, R.; D’Achille, C.; Pescatore,
G.; Carlo, B. Tetrahedron Lett. 2003, 44, 6999. (b) Xiao, D.; Zhang, Z.;
Jiang, Q.; Zhang, X. Tetrahedron Lett. 1998, 39, 5331.
(12) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004, 126,
13794.
(13) (a) Sosinsky, B. A. In Chemical Mo¨ssbauer Spectroscopy; Herber, R. H.,
Ed.; Plenum Press: New York, 1984. (b) Hawrelak, E. J.; Bernskoetter,
W. H.; Lobkovsky, E.; Yee, G. T.; Bill, E.; Chirik, P. J. Inorg. Chem.
2005, 44, 3103.
(14) Cirera, J.; Alemany, P.; Alvarez, S. Chem. Eur. J. 2004, 10, 190.
(15) A qualitative correlation diagram highlighting these interactions is
presented in Figure S4.
(16) (a) Huang, D.; Streib, W. E.; Eisenstein, O.; Caulton, K. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 2004. (b) Ogasawara, M.; Macgregor, S. A.; Streib,
W. E.; Folting, K.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. 1995,
117, 8869.
(17) de Bruin, B.; Bill, E.; Bothe, W.; Weyermu¨ller, T.; Wieghardt, K. Inorg.
Chem. 2000, 39, 2936.
(18) Small, B. L.; Brookhart, M.; Bennett, A. M. A. J. Am. Chem. Soc. 2004,
126, 13794.
(19) (a) Jenkins, D. M.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2002,
124, 11238. (b) Hu, X.; Meyer, K. J. J. Am. Chem. Soc. 2004, 126, 16322.
(20) (a) Mindiola, D. J.; Hillhouse, G. L. Chem. Commun. 2002, 1840. (b)
Kogut, E.; Wiencko, H. L.; Zhang, L.; Cordeau, D. E.; Warren, T. H. J.
Am. Chem. Soc. 2005, 127, 11248.
(21) (a) Stille, J. K.; Lau, K. S. Y. Acc. Chem. Res. 1978, 10, 343. (b) Kuch,
P. L.; Tobias, R. S. J. Organomet. Chem. 1976, 122, 429. (c) Pool, J. A.;
Lobkovsky, E.; Chirik, P. J. Organometallics 2003, 22, 2797.
To gain additional insight into the course of the catalytic aryl
azide hydrogenation, deuteration studies were performed. Treatment
of 2a-2c with 1 atm of D2 gas afforded the N-deuterated aniline,
ArND2, and the iron dideuterium complex, 1-D2. Analysis of the
product mixture by 2H NMR spectroscopy revealed isotopic
incorporation into the isopropyl aryl methyl groups in the terdentate
ligand and the aniline, arising from methyl group cyclometalation.
Competition experiments (H2 vs D2) with 2a at 65 °C established
a normal, primary kinetic isotope effect of 1.7(2) for hydrogenation
(deuteration).
Based on these findings, the mechanism for catalytic aryl azide
hydrogenation most likely involves 1,2-addition of H2 across the
iron-nitrogen bond ultimately resulting in reductive elimination
of aniline. The lack of catalytic turnover with the smallest aryl azide,
JA057165Y
9
J. AM. CHEM. SOC. VOL. 128, NO. 16, 2006 5303