C O M M U N I C A T I O N S
Scheme 4. Synthesis of Bistramide Aa
Scheme 3. Preparation of Spiroketal Fragment 4a
a Conditions: (a) MeOH, MeNH2, 65 °C; (b) PyBOP, 3, DIEA, DMF
88% (two steps); (c) Et2NH, DMF; (d) 2, DMF 82% (two steps).
was identical in all respects (1H, 13C, [R]D, MS) to the natural
product. The synthesis was completed with a longest linear sequence
of 18 steps (Scheme 4).
a Conditions: (a) NaHMDS, allyl iodide, THF, PhMe, -78 to -45 °C,
81%; (b) LiBH4, MeOH, Et2O, 98%; (c) Et3N, DMSO, (COCl)2, CH2Cl2,
-78 to 25 °C, 98%; (d) LiHMDS, THF, sulfone 17, then aldehyde 16,
-78 to -20 °C, 87%; (e) Cl2(Cy3P)(IMes)RudCHPh, methyl acrylate,
CH2Cl2, 40 °C, 87%; (f) H2, Pd/C, EtOAc; (g) p-TSA, benzene, 80 °C,
70% (two steps); (h) alkyne 20, n-BuLi, -78 °C, then lactone 19; (i) H2,
Pd/C, MeOH, EtOAc, 83% (two steps); (j) PPh3, DEAD, phthalimide, THF,
0 °C; (k) HF/pyr., THF, 84% (two steps); (l) Dess-Martin periodinane,
CH2Cl2, pyr., 92%; (m) Ba(OH)2, THF, MeCOCH(Me)P(O)(OEt)2 (23),
58%; (n) (R)-CBS, catecholborane, toluene, -78 °C, 65%, >98:2 dr.
Acknowledgment. Financial support from the National Cancer
Institute (CA63572) is gratefully acknowledged. Thanks also to
Professors P. Wipf and S. Kozmin for helpful discussions.
Supporting Information Available: Experimental procedures as
well as 1H and 13C NMR spectra for all new compounds. This material
with hydrogen and Pd/C followed by in situ acylation to yield the
desired carboxylic acid fragment 3.
References
Construction of the spiroketal fragment 4 began with an
asymmetric glycolate alkylation16 of the sodium enolate of imide
15 with allyl iodide to produce the allylated acyl oxazolidinone in
81% yield (>98:2 dr; Scheme 3). Reductive cleavage of the
auxiliary, followed by oxidation of the resulting primary alcohol
under Swern17 conditions, gave aldehyde 16. Subjection of aldehyde
16 to a modified Julia reaction18 with sulfone 17 gave diene 18 as
a 60:40 mixture of E:Z isomers. A cross-metathesis reaction of diene
18 with methyl acrylate provided the unsaturated methyl ester in
87% yield. Hydrogenation of the two alkenes resulted in concomi-
tant cleavage of the benzyl ether, whereupon treatment with acid
gave lactone 19 (70% yield, two steps). Addition of lactone 19 to
the lithium acetylide of alkyne 20 produced a keto alcohol, which
was immediately exposed to hydrogen and Pd/C at 50 psi. As
anticipated, the resulting trihydroxy ketone spontaneously cyclized
to exclusively produce spiroketal 21 in 83% yield over two steps.
Installation of the phthalimide under Mitsunobu14 conditions,
followed by deprotection of the TBDPS ether, gave alcohol 22 in
84% yield over two steps. Treatment of alcohol 22 with the Dess-
Martin reagent19 provided the aldehyde, which was subjected to a
Horner-Wadsworth-Emmons olefination20 with phosphonate 23
to install the E-olefin (C36-C37). The completed spiroketal
fragment 4 was then obtained by stereoselective reduction of the
resulting ketone with Corey’s oxazoborolidine21 to establish the
C39 stereogenic center.
(1) (a) Gouiffes, D.; Moreau, S.; Helbecque, N.; Bernier, J. L.; Henichart, J.
P.; Barbin, Y.; Laurent, D.; Verbist, J. F. Tetrahedron 1988, 44, 451. (b)
Degnan, B. M.; Hawkins, C. J.; Lavin, M. F.; McCaffrey, E. J.; Parry, D.
L.; Watters, D. J. J. Med. Chem. 1989, 32, 1354.
(2) Biard, J. F.; Roussakis, C.; Kornprobst, J. M.; Gouiffesbarbin, D.; Verbist,
J. F.; Cotelle, P.; Foster, M. P.; Ireland, C. M.; Debitus, C. J. Nat. Prod.
1994, 57, 1336.
(3) Johnson, W. E.; Watters, D. J.; Suniara, R. K.; Brown, G.; Bunce, C. M.
Biochem. Biophys. Res. Commun. 1999, 260, 80.
(4) Sauviat, M. P.; Gouiffesbarbin, D.; Ecault, E.; Verbist, J. F. Biochim.
Biophys. Acta 1992, 1103, 109.
(5) Frey, M. R.; Leontieva, O.; Watters, D. J.; Black, J. D. Biochem.
Pharmacol. 2001, 61, 1093.
(6) (a) Foster, M. P.; Mayne, C. L.; Dunkel, R.; Pugmire, R. J.; Grant, D.
M.; Kornprobst, J. M.; Verbist, J. F.; Biard, J. F.; Ireland, C. M. J. Am.
Chem. Soc. 1992, 114, 1110. (b) Solladie, G.; Bauder, C.; Biard, J. F.
Tetrahedron Lett. 2000, 41, 7747. (c) Gallagher, P. O.; McErlean, C. S.
P.; Jacobs, M. F.; Watters, D. J.; Kitching, W. Tetrahedron Lett. 2002,
43, 531. (d) Wipf, P.; Uto, Y.; Yoshimura, S. Chem.-Eur. J. 2002, 8,
1670. (e) Wipf, P.; Hopkins, T. D. Chem. Commun. 2005, 3421. (f) Lowe,
J. T.; Panek, J. S. Org. Lett. 2005, 7, 3231. (g) Zuber, G.; Goldsmith,
M.-R.; Hopkins, T. D.; Beratan, D. N.; Wipf, P.; Org. Lett. 2005, 7, 5269.
(7) Statsuk, A. V.; Liu, D.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126,
9546.
(8) Hamdouchi, C.; Sanchez-Martinez, C. Synthesis 2001, 833.
(9) Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem.
2001, 66, 894.
(10) Kopecky, D. J.; Rychnovsky, S. D. J. Org. Chem. 2000, 65, 191.
(11) Pilli, R. A.; Dias, L. C.; Maldaner, A. O. J. Org. Chem. 1995, 60, 717.
(12) Hatakeyama, S.; Yoshida, M.; Esumi, T.; Iwabuchi, Y.; Irie, H.;
Kawamoto, T.; Yamada, H.; Nishizawa, M. Tetrahedron Lett. 1997, 38,
7887.
(13) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.;
Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
(14) Mitsunobu, O. Synthesis 1981, 1.
(15) Zhao, M. Z.; Li, J.; Mano, E.; Song, Z. G.; Tschaen, D. M.; Grabowski,
E. J. J.; Reider, P. J. J. Org. Chem. 1999, 64, 2564.
With the three required fragments in hand, their assembly to
bistramide A was undertaken. Cleavage of the phthalimide protect-
ing group of 4 with methanol and methylamine gave the amine,
which was immediately exposed to a PyBOP-mediated condensation
with acid 3 delivering amide 24 in 88% yield over two steps.
Removal of the Fmoc group with subsequent exposure of the
unpurified amine to ester 2 provided synthetic bistramide A, which
(16) Crimmins, M. T.; Emmitte, K. A.; Katz, J. D. Org. Lett. 2000, 2, 2165.
(17) Swern, D.; Mancuso, A. J.; Huang, S.-L. J. Org. Chem. 1978, 43, 2480.
(18) Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563.
(19) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277.
(20) Paterson, I.; Yeung, K. S.; Smaill, J. B. Synlett 1993, 774.
(21) Corey, E. J.; Helal, C. J. Angew. Chem. Int. Ed. 1998, 37, 1987.
JA057686L
9
J. AM. CHEM. SOC. VOL. 128, NO. 15, 2006 4937