2210
N. Moss et al. / Bioorg. Med. Chem. Lett. 19 (2009) 2206–2210
Table 7
Potency and pharmacokinetic data for top compounds
F
N
F
F
N
N
N
H
N
H
N
HN
N
N
S
O
O
O
O
33
34
35
5-HT2B IC50 (nM)a
1.1
35
100
17
14,000
1700
0.6
30
54
60
2300
870
0.2
7
118
29
6500
600
5-HT2B 4% HSA IC50 (nM)a
Rat PKb %F
1 mg/kg iv CL (%Q)
10 mg/kg po oral AUC (ng h/mL)
Oral Cmax (ng/mL)
a
See footnote for Table 2.
Male Sprague Dawley rats dosed 70/30 PEG400/water.
b
6. Nebigil, C. G.; Nickel, P.; Messanddeq, N.; Vonesch, J.-L.; Douchet, M. P.;
Monassier, ; Gyorgy, K.; Matz, R.; Andriantsitohaina, R.; Manivet, P.; Launay, J.-
M.; Maroteaux, L. Circulation 2001, 103, 2973.
7. Nebigil, C. G.; Jaffré, F.; Messanddeq, N.; Nickel, P.; Maroteaux; Monassier, L.;
Launay, J.-M.; Maroteaux, L. Circulation 2003, 107, 3223.
8. Jaffré, F.; Callebert, J.; Sarre, A.; Etienne, N.; Nebigil, C. G.; Launay, J.-M.;
Maroteaux, L.; Monassier, L. Circulation 2004, 110, 969.
9. Liang, Y.-J.; Lai, L.-P.; Wang, B.-W.; Juang, S.-J.; Chang, C.-M.; Leu, J.-G.; Shyu, K.-
G. Cardiovasc. Res. 2006, 72, 303.
10. Monassier, L.; Laplante, M.-A.; Jaffré, F.; Bousquet, P.; Maroteaux, L.; de
Champlain, J. Hypertension 2008, 52, 301.
11. Ojaimi, C.; Qanud, K.; Hintze, T. H.; Recchia, F. A. Physiol. Genomics 2007, 29, 76.
12. Oxford, A. W.; Borman, R. A.; Coleman, R. A.; Clark, K. L.; Hynd, G.; Archer, J. A.;
Aley, A.; Harris, N. V.; Goulter, A. USPTO Application 20050176791.
13. Trainor, G. L. Expert Opin. Drug Discovery 2007, 2, 51.
14. Reavill, C.; Kettle, A.; Holland, V.; Riley, G.; Blackburn, T. P. Br. J. Pharmacol.
1999, 126, 572.
15. Bonhaus, D. W.; Flippen, L. A.; Greenhouse, R. J.; Jaime, S.; Rocha, C.; Dawson,
M.; Van Natta, K.; Chang, L. K.; Pulido-Rios, T.; Webber, A.; Leung, E.; Eglen, R.
M.; Martin, G. R. Br. J. Pharmacol. 1999, 127, 1075.
compound 1 to 16). Similarly, HSA binding calculations (LogKHSA
)
predict the phenyl to pyrimidine change would lead to a slightly
greater reduction in binding to HSA than the benzimidazole to
imidazole change.23 Despite the predictions from calculated phys-
icochemical properties, introducing polar functionality had less of
an impact on potency in our HSA assay than removing a phenyl
ring. We measured equilibrium dialysis plasma protein binding
for compounds 1, 16, and 26 (99.9, 99.1, and 99.9, respectively).
Interestingly, despite all being very high, these values do not match
the trends from either the HSA shift assay or the predictions from
calculated physicochemical properties. There are of course caveats
with interpreting each of these three methods for ranking protein
binding, not the least of which is the role of plasma components
other than HSA. Nonetheless, we hypothesize that the conse-
quences of relative binding to serum protein in a functional cell as-
say will be more predictive of impact in vivo. The veracity of this
hypothesis requires an in-depth analysis of pharmacological effi-
cacy and associated pharmacokinetics which is beyond the scope
of this publication. Nevertheless we felt it instructive to highlight
some results involving structure–protein binding relationships.
In summary we have discovered a new series of 5-HT2B antag-
onists that maintain good potency in the presence of HSA and pos-
sess favorable pharmacokinetic properties in rats. These
compounds provide a better balance of potency, selectivity and
PK than currently published literature benchmarks. Consequently
these compounds should make superior tools for assessing the po-
tential of 5-HT2B antagonists for chronic heart failure.
16. Dhanoa, D. S.; Becker, O.; Noiman, S.; Alla, S. R.; Melendez, R. E.; Sharadendu,
A.; Chen, D.; Marantz, Y.; Shacham, S.; Heifetz, A.; Inbal, B.; Kesavan, V.; Bar-
Haim, S.; Cheruka, S. R. WO Patent Application 2006034511, 2006.
17. Compound 1 returned <65% inhibition at 10
conducted at MDS Pharma Services. Dopamine D4.2 was the one receptor
showing significant inhibition (99% at 10 M).
lM of a panel of 40 receptors
l
18. We chose to use a serum shift assay to estimate the impact of protein binding
because standard equilibrium dialysis experiments to determine protein
binding are not high throughput and are not sensitive enough to distinguish
between highly protein bound compounds. Rusnak, D. W.; Lai, Z.; Lansing, T. J.;
Rhodes, N.; Gilmer, T. M.; Copeland, R. A. Bioorg. Med. Chem. Lett. 2004, 14,
2309. Using 4% HSA proved convenient as an estimate for the effect of serum
components, since the use of serum in the assay stimulated calcium release
presumably due to endogenous serotonin.
19. The plasma protein binding for compound 1, RS-127445, and compound A were
determined by equilibrium dialysis to be 99.9%, 99.9%, and 99%, respectively.
20. Gleeson, M. P. J. Med. Chem. 2007, 50, 101.
21. All compounds in Tables 2–6 did not inhibit either 5-HT2A/C at concentrations
References and notes
up to ꢀ10
lM.
22. Most of the biaryl carboxylic acids are commercially available. So are the amine
pieces in compounds 22, 25 and 27 which were coupled to biphenyl carboxylic
acid by the options in Scheme 1. The azetidine fragment in compound 23 was
prepared in the same manner as compound X.
1. Poissonnet, G.; Parmentier, J. G.; Boutin, J. A.; Goldstein, S. Mini-Rev. Med. Chem.
2004, 4, 325.
2. (a) Clineschmidt, B. V.; Reiss, D. R.; Pettibone, D. J.; Robinson, J. L. J. Pharmacol.
Exp. Ther. 1985, 235, 696; (b) Baez, M.; Yu, L.; Cohen, M. L. Mol. Pharmacol. 1990,
38, 31.
3. Johnson, K. W.; Nelson, D. L.; Dieckman, D. K.; Wainscott, D. B.; Lucaites, V. L.;
Audia, J. E.; Owton, W. M.; Phebus, L. A. Cephalalgia 2003, 2, 117.
4. Borman, R. A.; Tilford, N. S.; Harmer, D. W.; Day, N.; Ellis, E. S.; Sheldrick, R. L.
G.; Carey, J.; Coleman, R. A.; Baxter, G. S. Br. J. Pharmacol. 2002, 135, 1144.
5. Esteve, J. M.; Launay, J.-M.; Kellermann, O.; Maroteaux, L. Cell Biochem. Biophys.
2007, 47, 33.
23. These calculations were based on a QSAR model implemented in the program
QIKPROP that was developed from high-performance affinity chromatography
determinations of binding affinities of 95 diverse drugs and druglike compounds
to HSA. See Colmenarejo, G.
J . Med. Chem. 2001, 44, 4370–4378; also
Colmenarejo, G. Med. Res. Rev. 2003, 23, 275–301. LogKHSA values for the
training set range from À2.69 to +1.37 for low HSA to high HSA binding. The
values for compounds 1, 16, 26 were calculated to be +1.01, +0.62, and +0.66
respectively.