relevant moiety in amines 14 and 16, their preparation might be of
importance as target compounds or as substrates for further
elaboration. The versatility of these compounds as substrates in
organic synthesis is currently under investigation, and will be
communicated in due course.
In conclusion, it has been demonstrated that 2-(aryloxymethyl)
aziridinium salts can be opened in a regio- and stereospecific way
by bromide to give N-(2-bromo-3-aryloxypropyl)amines, in
accordance with an SN2 type reaction mechanism. This methodo-
logy constitutes a novel protocol for the design of chiral syntheses
towards substituted aminopropane derivatives as biologically
relevant targets in medicinal chemistry.
Fig. 2 Energy profile for reaction route a and b with SE the stabilization
energy and CSE the coordination solvation energy as defined in the text.
The energies are relative to the isolated species.
Notes and references
1 (a) U. M. Lindstro¨m and P. Somfai, Synthesis, 1998, 109; (b)
B. Zwanenburg and P. ten Holte, Top. Curr. Chem., 2001, 94; (c)
J. B. Sweeney, Chem. Soc. Rev., 2002, 31, 247; (d) X. E. Hu,
Tetrahedron, 2004, 60, 2701.
2 (a) D. Tanner, Angew. Chem., Int. Ed. Engl., 1994, 33, 599; (b) H. M.
I. Osborn and J. Sweeney, Tetrahedron: Asymmetry, 1997, 8, 1693; (c)
W. McCoull and F. A. Davis, Synthesis, 2000, 1347.
3 (a) J. L. Pierre, P. Baret and E. M. Rivoirard, J. Heterocycl. Chem.,
1978, 15, 817; (b) A. R. Bassindale, P. A. Kyle, M. C. Soobramanien
and P. G. Taylor, J. Chem. Soc., Perkin Trans. 1, 2000, 439; (c)
K. Weber, S. Kuklinski and P. Gmeiner, Org. Lett., 2000, 2, 647.
4 (a) T. B. Sim, S. H. Kang, K. S. Lee, W. K. Lee, H. Yun, Y. Dong and
H.-J. Ha, J. Org. Chem., 2003, 68, 104; (b) D. Gnecco, L. Orea,
F. A. Galindo, R. G. Enr´ıquez, R. A. Toscano and W. F. Reynolds,
Molecules, 2000, 5, 998; (c) B. Crousse, S. Narizuka, D. Bonnet-Delpon
and J.-P. Begue, Synlett, 2001, 679; (d) L. Testa, M. Akssira, E. Zaballos-
Garc´ıa, P. Arroyo, L. R. Domingo and J. Sepu´lveda-Arques,
Tetrahedron, 2003, 59, 677; (e) T. N. Wade, J. Org. Chem., 1980, 45,
5328; (f) G. M. Alvernhe, C. M. Ennakoua, S. M. Lacombe and A. J.
Laurent, J. Org. Chem., 1981, 46, 4938; (g) P. O’Brien and T. D.
Towers, J. Org. Chem., 2002, 67, 304; (h) T. Katagiri, M. Takahashi,
Y. Fujiwara, H. Ihara and K. Uneyama, J. Org. Chem., 1999, 64, 7323.
5 Spectral data of 9a and 12: see ESI{.
Fig. 3 Transition state for route b as depicted in Scheme 1.
molecules. More details about the effects of solvation can be found
in the literature.12
At second instance the transition states for both SN2 reaction
routes were calculated (pathway a and b in Scheme 1). Both
transition states are consistent with an SN2 mechanism
(C3–N 5 1.77 s and C3–Br 5 2.73 s for b; C2–N 5 1.70 s
and C2–Br 5 2.68 s for a). The reaction barriers for pathway a
and b amount to 76 and 70 kJ mol21, respectively (cf. Fig. 2). The
transition state for route b is shown in Fig. 3. Our theoretical
calculations thus confirm the experimental results that an SN2
reaction at the most substituted carbon atom is preferred by
approximately 6 kJ mol21. Furthermore, these calculations have
pointed out an important result of taking into account solvent
effects. Without inclusion of bulk solvent effects, no reaction
preference was found for route b. Only when all species were
properly embedded in a continuous dielectric medium was the
correct reaction preference found. This theoretical finding is a
preliminary indication for further experimental work of aziridi-
nium salts in a variety of solvents as the reaction preference might
be altered depending on the molecular environment used, which is
currently under investigation. A previous theoretical study on the
hydrolysis of 2-methyl and 2,2-dimethyl substituted aziridinium
salts found that the correct reaction preference, i.e. attack at the
less or most substituted carbon atom, was already correctly
described by gas phase calculations.13 These systems dealt however
with neutral nucleophiles for which the polar effects might be
expected to be less important.
6 M. D’hooghe and N. De Kimpe, Synlett, 2004, 271.
7 (a) J. D. Fitzgerald, in Pharmacology of Antihypertensive Drugs, ed.
A. Scriabine, Raven Press, New York, 1980, pp. 195; (b) S. Aubriot,
E. Nicolle, M. Lattier, C. Morel, W. Cao, K. W. Daniel, S. Collins,
G. Leclerc and P. Faure, Bioorg. Med. Chem. Lett., 2002, 12, 209; (c)
S. Narimatsu, T. Watanabe, Y. Masubuchi, T. Horie, Y. Kumagai,
A. K. Cho, S. Imaoka, Y. Funae, T. Ishikawa and T. Suzuki, Chem.
Res. Toxicol., 1995, 8, 721; (d) M. A. Ashwell, W. R. Solvibile, Jr.,
S. Han, E. Largis, R. Mulvey and J. Tillet, Bioorg. Med. Chem. Lett.,
2001, 11, 3123; (e) L.-W. Wang, J.-J. Kang, I.-J. Chen, C.-M. Teng and
C.-N. Lin, Bioorg. Med. Chem., 2002, 10, 567.
8 M. D’hooghe, W. Van Brabandt and N. De Kimpe, J. Org. Chem.,
2004, 69, 2703.
9 D. K. Pyun, C. H. Lee, H.-J. Ha, C. S. Park, J.-W. Chang and
W. K. Lee, Org. Lett., 2001, 3, 4197.
10 Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2004, 108, 6908.
11 Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr.,
T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi and V. Barone, Gaussian, Inc., Pittsburgh PA, 2003.
12 L. M. Pratt and A. Streitwieser, J. Org. Chem., 2003, 68, 2830.
13 (a) A. Bouyacoub, Y. Jean and F. Volatron, J. Mol. Struct.
(THEOCHEM), 1996, 371, 51; (b) M. A. Silva and J. M. Goodman,
Tetrahedron Lett., 2005, 46, 2067.
14 (a) T. Kuroita, M. Bogauchi, A. Nishiyama and Y. Morio, Jpn. Kokai
Tokkyo Koho, 2000, JP 2000086603 A2, Chem. Abs., 2000, 132, 236993;
(b) Z. Lidert, D. H. Young, M. M. Bowers-Daines, S. E. Sherba,
R. J. Mehta, B. C. Lange, C. Swithenbank, H. Kiyokawa,
M. G. Johnson, S. L. Morris-Natschke and K.-H. Lee, Bioorg. Med.
Chem. Lett., 1997, 7, 3153; (c) F. Bondavalli, M. Botta, O. Bruno,
A. Ciacci, F. Corelli, P. Fossa, A. Lucacchini, F. Manetti, C. Martini,
G. Menozzi, L. Mosti, A. Ranise, S. Schenone, A. Tafi and
M. L. Trincavelli, J. Med. Chem., 2002, 45, 4875.
N-(2-Halo-3-aryloxypropyl)amines have been reported to exhi-
bit a variety of biological activities, resulting in the application of
analogous compounds as e.g. antidepressants, antimicrobial and
antifungal agents.14 Due to the presence of such a biologically
1556 | Chem. Commun., 2006, 1554–1556
This journal is ß The Royal Society of Chemistry 2006