11894
K. Guzow et al. / Tetrahedron 60 (2004) 11889–11894
(AcOEt/petroleum ether 2:5), RfZ0.67), giving the Schiff
base as a yellow solid (1.6 g, 3.56 mmol, 87%). The
obtained Schiff base was filtered off and dissolved in
DMSO (10 mL) and lead tetraacetate (2.78 g, 6.27 mmol)
was added. The mixture was stirred at rt for about an hour
(TLC monitoring (AcOEt/petroleum ether 1:1), RfZ0.32)
and then dissolved in ethyl acetate (AcOEt) and washed in
turns with a saturated aqueous solution of NaCl (!1), a 5%
solution of NaHCO3 (!2), a saturated aqueous solution of
NaCl (!3) and dried over anhydrous MgSO4. The solvent
was evaporated in vacuo and the product was isolated by
means of column chromatography using as an eluent
AcOEt/petroleum ether (1:1). The crude product was
recrystallized from AcOEt/petroleum ether, giving the
title compound (0.17 g, 0.39 mmol, 10%) as a white solid
(tRZ36.2 min).
References and notes
1. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.;
Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E.
Chem. Rev. 1997, 97, 1515–1566.
2. Bargossi, C.; Fiorini, M. C.; Montalti, M.; Prodi, L.;
Zaccheroni, N. Coord. Chem. Rev. 2000, 208, 17–32.
3. Warmke, H.; Wiczk, W.; Ossowski, T. Talanta 2000, 52,
449–456.
4. Rurack, K. Spectrochim. Acta, Part A 2001, 57, 2161–2195.
5. Topics in Fluorescence Spectroscopy; Lakowicz, J. R., Ed.;
Probe Design and Chemical Sensing; Plenum: New York,
1994; Vol. 4.
6. Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3–40.
7. Fluorescent Chemosensors for Ion and Molecular Recog-
nition; Czarnik, A., Ed.; American Chemical Society:
Washington, DC, 1993.
Mp 106–107 8C; (Found: C, 67.40; N, 9.32; H, 5.71.
C25H25N3O5 requires C, 67.10; N, 9.39; H, 5.63%); nmax
(KBr) 3358.5 (m), 2969.0 (w), 1751.6 (s), 1736.4 (s), 1686.0
(s), 1525.5 (s), 1439.4 (m), 1351.5 (m), 1297.9 (m), 1259.0
8. Handbook of Fluorescent Probes and Research Products;
Haugland, R. P., Ed.; Molecular Probes: Eugene, 2002.
9. Xue, G.; Bradshaw, J. S.; Dalley, N. K.; Savage, P. B.; Izatt,
R. M.; Prodi, L.; Montalti, M.; Zaccheroni, N. Tetrahedron
2002, 58, 4809–4815.
(s), 1210.9 (m), 1166.4 (s), 1056.4 (w), 791.6 (m) cmK1; dH
0
(400 MHz, CDCl3) 9.18 (1H, dd, JZ2.0, 4.2 Hz, C2 H),
0
8.54 (1H, dd, JZ1.2, 7.4 Hz, C5 H), 8.27 (1H, dd, JZ2.0,
10. Kimber, M. C.; Mahadevan, B. M.; Lincoln, S. F.;
Ward, A. D.; Tiekink, E. R. T. J. Org. Chem. 2000, 65,
8204–8209.
0
0
8.4 Hz, C4 H), 8.03 (1H, dd, JZ1.2, 8.2 Hz, C7 H), 7.71
0
(1H, d, JZ7.2 Hz, C6 H), 7.68 (1H, s, C4H), 7.60 (1H, d, JZ
0
8.0 Hz, C7H), 7.53 (1H, dd, JZ4.4, 8.2 Hz, C3 H), 7.16 (1H,
dd, JZ1.6, 8.2 Hz, C6H), 5.03 (1H, d, JZ8.0 Hz, NH), 4.64
(1H, dd, JZ5.6, 13.6 Hz, CaH), 3.74 (3H, s, OCH3), 3.23–
11. Prodi, L.; Montalti, M.; Zaccheroni, N.; Bradshaw, J. S.; Izatt,
R. M.; Savage, P. B. Tetrahedron Lett. 2001, 42, 2941–2944.
12. Xue, G.; Bradshaw, J. S.; Dalley, N. K.; Savage, P. B.;
Krakowiak, K. E.; Izatt, R. M.; Prodi, L.; Montalti, M.;
Zaccheroni, N. Tetrahedron 2001, 57, 7623–7628.
13. Guzow, K.; Szabelski, M.; Malicka, J.; Wiczk, W. Helv. Chim.
Acta 2001, 84, 1086–1092.
3.28 (2H, m, CbH2), 1.40 (9H, s, (CH3)3); dC (100 MHz,
0
CDCl3) 172.36 (CO)0, 157.00 (C2), 152.08 (C2 ), 152.00
(HNCO), 146.09 (C9 ), 146.00 (C8), 136.85 (C9), 132.91
0
0
0
0
(C8 ), 132.57 (C5), 131.97 (C4 ), 128.99 (C10 ), 126.71 (C5 ),
0
0
126.48 (C6), 126.20 (C6 ), 121.94 (C3 ), 121.15 (C4), 110.90
(C7), 80.12 (C(CH3)3), 54.84 (Ca), 52.54 (OCH3), 38.47
(Cb), 28.53 ((CH3)3); m/z (MALDI-TOF) 448 (MHC).
14. Guzow, K.; Szabelski, M.; Malicka, J.; Karolczak, J.; Wiczk,
W. Tetrahedron 2002, 58, 2201–2209.
15. Guzow, K.; Mazurkiewicz, K.; Szabelski, M.; Ganzynkowicz,
R.; Karolczak, J.; Wiczk, W. Chem. Phys. 2003, 295, 119–130.
16. Polster, J.; Lachmann, H. Spectrometric Titrations. Analysis of
Chemical Equilibria; VCH: New York, 1989.
4.3. UV–vis and fluorescence titration experiments
A solution of ligand (concentration about 5!10K5 M for
absorption and 5!10K6 M for emission) in acetonitrile was
treated with increasing amounts of a solution of perchlorate
salts of the cation of interest, except for terbium ions
where the chloride salt was used, (concentration about
5!10K4 M) containing a ligand at the same concentration
as in the cuvette at room temperature. After each addition of
aliquots using Hamilton microsyringe with micrometer
screw, the UV–vis or fluorescence spectrum was recorded.
When the titration was complete the spectra were
implemented into the STOICHIO software for binding
constant calculations.22
17. Irving, H.; Wiliams, R. J. P. Nature (London) 1948, 162,
746–747.
18. Steward, J. J. P. J. Comput. Chem. 1986, 10, 221–264.
19. Klamt, A.; Schu¨rmann, G. I. J. Chem. Soc., Perkin Trans. 2
1993, 799–805.
20. Steward, J. J. P. MOPAC 2002, Fujitsu Limited, 2001.
21. Lakowicz, J. R. Principles of Fluorescence Spectroscopy,
2nd ed.; Kluwer Academic/Plenum: New York, 1999.
22. Kostrowicki, J.; Liwo, A. Comput. Chem. 1987, 11,
195–210.
23. Wunsch, E. In Mhller, E., Ed.; Synthese von Peptiden;
Houben-Weyl, Methoden der organischen Chemie; Georg
Thieme Verlag: Stuttgart, 1974; Vol. 15, p 317.
24. Stewart, J. M.; Young, J. D. Solid Phase Peptide Synthesis;
Chemical Company: Rockford, IL, 1984; p 63.
¨
Acknowledgements
25. Teague, C. E. Jr.; Roe, A. J. Am. Chem. Soc. 1951, 73,
688–689.
This work was supported by the State Committee for
Scientific Research (KBN Poland) under grant
1005/T09/2003/24.