Communications
compounds.[23] It was previously prepared by the ordinary KR
2004, 69, 1972 – 1977; b) M. Edin, J. Steinreiber, J.-E. Bäckvall,
Proc. Natl. Acad. Sci. USA 2004, 101, 5761 – 5766; c) B. Martin-
Matute, M. Edin, K. Bogµr, F. B. Kaynak, J.-E. Bäckvall, J. Am.
Chem. Soc. 2005, 127, 8817 – 8825; d) P. Kielbasinski, M.
Rachwalski, M. Mikolajczyk, M. A. H. Moelands, B. Zwanen-
burg, F. P. J. T. Rutjes, Tetrahedron: Asymmetry 2005, 16, 2157 –
2160; e) G. K. M. Verzijl, J. G. de Vries, Q. B. Broxterman,
Tetrahedron: Asymmetry 2005, 16, 1603 – 1610.
of (Æ )-2g to give (R)-5g and (S)-2g, followed by Mitsunobu
reaction of the mixture. Although the enantioselectivity of the
KR was excellent (99% ee for both products), the Mitsunobu
inversion suffered partial racemization to give (R)-5g with
88% ee.[23a] Our DKR method produced (R)-5g (91% ee,
81% yield) directly (Table 2, entry 11).
In conclusion, we have shown that the combination of the
oxovanadium compound 1a with lipases produces a novel
DKR process with excellent enantiomer resolution and
chemical yields. The 1,3-transposition of allyl alcohols was
catalyzed by 1a and resulted in a thermodynamic equilibrium
of two regioisomers, which underwent highly enantio- and
chemoselective esterification under the action of the lipases.
Because the 1a-catalyzed 1,3-transposition reactions are not
very sensitive to oxygen and moisture, this DKR method
offers the advantage of a facile experimental procedure
without the need for special apparatus.[24] Furthermore, it
features a unique preparation of optically active esters of
secondary alcohols from the corresponding ketones via the
readily available tertiary alcohols; this synthesis is not
attainable by existing DKRs with ruthenium complexes.
[5] a) P. M. Dinh, J. A. Howarth, A. R. Hudnott, J. M. J. Williams,
W. Harris, Tetrahedron Lett. 1996, 37, 7623 – 7626; b) O. Pàmies,
J.-E. Bäckvall, Chem. Eur. J. 2001, 7, 5052 – 5058; c) M. Ito, A.
Osaku, S. Kitahara, M. Hirakawa, T. Ikariya, Tetrahedron Lett.
2003, 44, 7521 – 7523; d) S. Wuyts, D. E. de Vos, F. Verpoort, D.
Depla, R. de Gryse, P. A. Jacobs, J. Catal. 2003, 219, 417 – 424.
[6] For a related DKR of racemic secondary amines with palla-
dium(0) on carbon as a racemization catalyst, see: M. T. Reetz,
K. Schimossek, Chimia 1996, 50, 668 – 669; see also: Y. K. Choi,
M. J. Kim, Y. Ahn, M.-J. Kim, Org. Lett. 2001, 3, 4099 – 4101.
[7] For examples, see: R. M. Hanson, Org. React. 2002, 60, 1 – 156.
[8] For a recent review, see: E. Vedejs, M. Jure, Angew. Chem. 2005,
117, 4040 – 4069; Angew. Chem. Int. Ed. 2005, 44, 3974 – 4001.
[9] For recent examples, see: B. J. Lüssem, H.-J. Gais, J. Am. Chem.
Soc. 2003, 125, 6066 – 6067; H.-J. Gais, O. Bondarev, R. Hetzer,
Tetrahedron Lett. 2005, 46, 6279 – 6283.
[10] For typical reviews, see: R. Noyori, T. Ohkuma, Angew. Chem.
2001, 113, 40 – 75; Angew. Chem. Int. Ed. 2001, 40, 40 – 73; S.
Itsuno, Org. React. 1998, 52, 395 – 576.
Experimental Section
[11] For other recent examples based on different methodologies,
see: H. Li, P. J. Walsh, J. Am. Chem. Soc. 2004, 126, 6538 – 6539;
S. F. Kirsch, L. E. Overman, J. Am. Chem. Soc. 2005, 127, 2866 –
2867.
[12] The first preparation of 1a was reported independently by two
groups: a) N. F. Orlov, B. N. Dolgov, M. G. Voronkov, Dokl.
Akad. Nauk SSSR 1958, 122, 246 – 249; b) F. E. Granchelli, G. B.
Walker, US 2863891, 1958 [Chem. Abstr. 1959, 53, 50997]; for a
precise preparation of 1a, see: c) B. M. Trost, C. Jonasson,
Angew. Chem. 2003, 115, 2109 – 2112; Angew. Chem. Int. Ed.
2003, 42, 2063 – 2066.
[13] a) P. Chabardes, E. Kuntz, J. Varagnat, Tetrahedron 1977, 33,
1775 – 1783; for a review, see: b) S. Bellemin-Laponnaz, J.-P.
Le Ny, C. R. Chim. 2002, 5, 217 – 224.
[14] The related isomerization of propargyl and allenyl alcohols has
found synthetic use for producing conjugated carbonyl com-
pounds after irreversible enol–keto transformation (for an
example, see: C. Tode, Y. Yamano, M. Ito, J. Chem. Soc.
Perkin Trans. 1 2001, 3338 – 3345) and was applied to the aldol
reaction of the intermediate vanadium enolates.[12c]
Typical procedure: (Æ )-2a (50 mg, 0.36 mmol), 4a (93 mg,
0.71 mmol), 1a (32 mg, 0.036 mmol), CAL-B (150 mg), and anhy-
drous acetone (4 mL) were added to a round-bottomed flask. The
flask was sealed and the reaction mixture was stirred at 258C for
2.5 days. The reaction mixture was then filtered and concentrated in
vacuo. The residue was purified by flash column chromatography on
SiO2 (hexane/Et2O, 20:1 to 2:1) to give (R)-5a as a colorless oil
(62 mg, 95% yield, 98% ee (GC analysis with TCI chiraldex G-TA)).
[a]2D0 = + 35.0 (c = 0.96, CHCl3); 1H NMR (300 MHz, CDCl3): d = 1.26
(d, J = 7.0 Hz, 3H), 1.48–1.58 (m, 6H), 2.02 (s, 3H), 2.06–2.09 (m,
2H), 2.18–2.23 (m, 2H), 5.11 (br d, J = 9.0 Hz, 1H), 5.63 ppm (qd, J =
7.0, 9.0 Hz, 1H); 13C NMR (75 MHz, CDCl3): d = 21.3, 21.5, 26.6,
27.7, 28.4, 29.4, 36.8, 67.4, 121.5, 144.1, 170.5 ppm; IR (KBr): n =
1715 cmÀ1; elemental analysis: calcd (%): C 72.49, H 9.95; found: C
72.26, H 9.89.
Received: October 24, 2005
Revised: January 13, 2006
Published online: March 17, 2006
[15] The vanadium catalyst prepared in situ from [VOACHTRE(UNG acac)2] and
Keywords: allyl alcohols · asymmetric synthesis ·
dynamic kinetic resolution · lipases · vanadium
Me3SiOOSiMe3 caused isomerization at room temperature: S.
Matsubara, T. Okazoe, K. Oshima, K. Takai, H. Nozaki, Bull.
Chem. Soc. Jpn. 1985, 58, 844 – 849.
.
[16] The lipase-catalyzed reactions of tertiary alcohols are usually
slow, probably due to steric hindrance: U. T. Bornscheuer, R. J.
Kazlauskas, Hydrolases in Organic Synthesis: Regio- and Ste-
reoselective Biotransformations, Wiley-VCH, Weinheim, 1999,
p. 95.
[17] For a review, see: Y. Kita, S. Akai, Chem. Rec. 2004, 4, 363 – 372;
for a recent example, see: S. Akai, K. Tanimoto, Y. Kanao, S.
Ohmura, Y. Kita, Chem. Commun. 2005, 2369 – 2371.
[18] For the E-selective reduction of alkynes with LiAlH4/NaOMe,
see: I. Fleming, N. K. Terrett, J. Organomet. Chem. 1984, 264,
99 – 118.
[1] For recent reviews, see: a) S. M. Roberts, J. Chem. Soc. Perkin
Trans. 1 2001, 1475 – 1499; b) T. Ema, Curr. Org. Chem. 2004, 8,
1009 – 1025; c) A. Ghanem, H. Y. Aboul-Enein, Chirality 2005,
17, 1 – 15; d) E. Garcia-Urdiales, I. Alfonso, V. Gotor, Chem.
Rev. 2005, 105, 313 – 354.
[2] For reviews, see: a) O. Pàmies, J.-E. Bäckvall, Chem. Rev. 2003,
103, 3247 – 3261; b) N. J. Turner, Curr. Opin. Chem. Biol. 2004, 8,
114 – 119; c) M.-J. Kim, Y. Ahn, J. Park, Bull. Korean Chem. Soc.
2005, 26, 515 – 522.
[3] S. Akai, K. Tanimoto, Y. Kita, Angew. Chem. 2004, 116, 1431 –
1434; Angew. Chem. Int. Ed. 2004, 43, 1407 – 1410.
[4] For some recent improvements and applications of the lipase–
ruthenium(ii)-catalyzed DKRs, see: a) J. H. Choi, Y. K. Choi,
Y. H. Kim, E. S. Park, E. J. Kim, M.-J. Kim, J. Park, J. Org. Chem.
[19] The reaction of 3a with 1a (10 mol%) in acetone at 258C
reached equilibrium after about 6 h to afford a mixture of 2a and
3a (15:85).
2594
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 2592 –2595