10.1002/anie.201800240
Angewandte Chemie International Edition
COMMUNICATION
A. Nagaki, Chem. Rev. 2008, 108, 2265; d) R. Francke, R. D. Little, Chem.
Soc. Rev. 2014, 43, 2492; e) E. J. Horn, B. R. Rosen, P. S. Baran, ACS
Cent. Sci. 2016, 2, 302.
In conclusion, we have developed a novel method for the
dehydrogenative C(sp2)-H/N-H cross-coupling between phenols
and phenothiazine derivatives under undivided electrolytic
conditions. This reaction protocol avoids the use of external
[7] S. Tang, Y. Liu, A. Lei, Chem 2018, 4, 27.
[8] a) C. Amatore, C. Cammoun, A. Jutand, Adv. Synth. Catal. 2007, 349,
292; b) T. Morofuji, A. Shimizu, J.-i. Yoshida, Angew. Chem. Int. Ed. 2012,
51, 7259; c) A. Kirste, G. Schnakenburg, F. Stecker, A. Fischer, S. R.
Waldvogel, Angew. Chem. Int. Ed. 2010, 49, 971; d) A. Kirste, B. Elsler, G.
Schnakenburg, S. R. Waldvogel, J. Am. Chem. Soc. 2012, 134, 3571; e)
B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel,
Angew. Chem. Int. Ed. 2014, 53, 5210; f) S. Lips, A. Wiebe, B. Elsler, D.
Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Angew. Chem.
Int. Ed. 2016, 55, 10872; g) R. Hayashi, A. Shimizu, J.-i. Yoshida, J. Am.
Chem. Soc. 2016, 138, 8400.
chemical oxidants, which provides
a simple and atom-
economical way for the synthesis of N-aryl phenothiazines.
Triphenylamines can also be synthesized either from the direct
electrooxidative aryl C-H amination of diphenylamines or from
the reduction of N-aryl phenothiazines. Importantly, the reaction
is scalable in the open air. Preliminary mechanistic study
suggests that the amine substrates are firstly oxidized to
generate radical cations during electrolysis.
[9] a) T. Siu, A. K. Yudin, J. Am. Chem. Soc. 2002, 124, 530; b) T. Siu, C. J.
Picard, A. K. Yudin, J. Org. Chem. 2005, 70, 932; c) K. Inoue, Y. Ishikawa,
S. Nishiyama, Org. Lett. 2010, 12, 436; d) D. Kajiyama, K. Inoue, Y.
Ishikawa, S. Nishiyama, Tetrahedron 2010, 66, 9779; e) W.-J. Gao, W.-C.
Li, C.-C. Zeng, H.-Y. Tian, L.-M. Hu, R. D. Little, J. Org. Chem. 2014, 79,
9613; f) T. Broese, R. Francke, Org. Lett. 2016, 18, 5896; g) S. R.
Waldvogel, S. Möhle, Angew. Chem. Int. Ed. 2015, 54, 6398.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21390402, 21520102003) and the Hubei
Province Natural Science Foundation of China (2017CFA010).
The Program of Introducing Talents of Discipline to Universities
of China (111 Program).
[10] a) T. Morofuji, A. Shimizu, J.-i. Yoshida, J. Am. Chem. Soc. 2013, 135,
5000; b) T. Morofuji, A. Shimizu, J.-i. Yoshida, J. Am. Chem. Soc. 2014,
136, 4496.
[11] S. Herold, S. Möhle, M. Zirbes, F. Richter, H. Nefzger, S. R. Waldvogel,
Eur. J. Org. Chem. 2016, 2016, 1274.
Keywords: C-N bond formation • electrochemistry • C-H
functionalization • amination • hydrogen evolution
[12] H.-B. Zhao, Z.-W. Hou, Z.-J. Liu, Z.-F. Zhou, J. Song, H.-C. Xu, Angew.
Chem. Int. Ed. 2017, 56, 587.
[13] a) N. J. Treat, H. Sprafke, J. W. Kramer, P. G. Clark, B. E. Barton, J.
Read de Alaniz, B. P. Fors, C. J. Hawker, J. Am. Chem. Soc. 2014, 136,
16096; b) X. Pan, M. Lamson, J. Yan, K. Matyjaszewski, ACS Macro Lett.
2015, 4, 192; c) X. Pan, C. Fang, M. Fantin, N. Malhotra, W. Y. So, L. A.
Peteanu, A. A. Isse, A. Gennaro, P. Liu, K. Matyjaszewski, J. Am. Chem.
Soc. 2016, 138, 2411; d) M. Chen, S. Deng, Y. Gu, J. Lin, M. J. MacLeod,
J. A. Johnson, J. Am. Chem. Soc. 2017, 139, 2257; e) M. Chen, H. Gong,
Y. Zhao, X. Shen, J. Lin, Angew. Chem. Int. Ed. 2018, 57, 333.
[14] a) M.-L. Louillat-Habermeyer, R. Jin, F. W. Patureau, Angew. Chem. Int.
Ed. 2015, 54, 4102; b) R. Jin, F. W. Patureau, Org. Lett. 2016, 18, 4491;
c) Y. Zhao, B. Huang, C. Yang, W. Xia, Org. Lett. 2016, 18, 3326.
[15] CCDC 1819981 (3l) and 1819982 (3m) contains the supplementary
crystallographic data for this paper. These data can be obtained free of
charge from the Cambridge Crystallographic Data Centre via
[1] a) R. Hili, A. K. Yudin, Nat. Chem. Biol. 2006, 2, 284; b) A. Ricci, Amino
group chemistry : from synthesis to the life sciences, John Wiley & Sons,
Inc., Weinheim, 2008.
[2] a) D. S. Surry, S. L. Buchwald, Angew. Chem. Int. Ed. 2008, 47, 6338; b)
J. F. Hartwig, Acc. Chem. Res. 2008, 41, 1534; c) J. Bariwal, E. Van der
Eycken, Chem. Soc. Rev. 2013, 42, 9283; d) C. Sambiagio, S. P.
Marsden, A. J. Blacker, P. C. McGowan, Chem. Soc. Rev. 2014, 43, 3525.
[3] a) K. Shin, H. Kim, S. Chang, Acc. Chem. Res. 2015, 48, 1040; b) J. Jiao,
K. Murakami, K. Itami, ACS Catal. 2016, 6, 610.
[4] a) M.-L. Louillat, F. W. Patureau, Chem. Soc. Rev. 2014, 43, 901; b) J.
Yuan, C. Liu, A. Lei, Chem. Commun. 2015, 51, 1394; c) H.-Y. Thu, W.-Y.
Yu, C.-M. Che, J. Am. Chem. Soc. 2006, 128, 9048; d) A. Armstrong, J. C.
Collins, Angew. Chem. Int. Ed. 2010, 49, 2282; e) A. A. Kantak, S.
Potavathri, R. A. Barham, K. M. Romano, B. DeBoef, J. Am. Chem. Soc.
2011, 133, 19960; f) B. Xiao, T.-J. Gong, J. Xu, Z.-J. Liu, L. Liu, J. Am.
Chem. Soc. 2011, 133, 1466; g) L. D. Tran, J. Roane, O. Daugulis,
Angew. Chem. Int. Ed. 2013, 52, 6043; h) R. Shrestha, P. Mukherjee, Y.
Tan, Z. C. Litman, J. F. Hartwig, J. Am. Chem. Soc. 2013, 135, 8480; i) N.
A. Romero, K. A. Margrey, N. E. Tay, D. A. Nicewicz, Science 2015, 349,
1326.
[16] a) H.-J. Yen, G.-S. Liou, J. Mater. Chem. 2010, 20, 9886; b) T.
Kuorosawa, C.-C. Chueh, C.-L. Liu, T. Higashihara, M. Ueda, W.-C. Chen,
Macromolecules 2010, 43, 1236; c) M. Thelakkat, Macromol. Mater. Eng.
2002, 287, 442; d) Y. Shirota, J. Mater. Chem. 2005, 15, 75; e) Y. Shirota,
H. Kageyama, Chem. Rev. 2007, 107, 953.
[17] T. G. Back, K. Yang, H. R. Krouse, J. Org. Chem. 1992, 57, 1986.
[5] L. Niu, H. Yi, S. Wang, T. Liu, J. Liu, A. Lei, Nat. Commun. 2017, 8, 14226.
[6] a) J. B. Sperry, D. L. Wright, Chem. Soc. Rev. 2006, 35, 605; b) A. Jutand,
Chem. Rev. 2008, 108, 2300; c) J.-i. Yoshida, K. Kataoka, R. Horcajada,
This article is protected by copyright. All rights reserved.