L.-H. Chan et al. / Polymer 53 (2012) 2334e2346
2345
PC71BM-based (w/w ¼ 1:3) PSC exhibited the highest PCE among
References
all PSCs, the deficits of the PCE values in our PSCs were mainly
caused by low FFs which indicated lacks of ordered continuity in
the copolymer/PC61BM or PC71BM blend films [76]. The preliminary
experimental results could offer some clues for the design of
maleimide-based copolymers for PSCs, such as broadening of the
absorption band to long wavelengths by the introduction of an
electron-donating low bandgap as well as high coplanarity como-
nomer to the polymer main chain.
[1] Park SP, Roy A, Beaupré S, Cho S, Coates N, Moon JS, et al. Nat Photon 2009;3:
297e302.
[2] Huo L, Hou J, Zhang S, Chen HY, Yang Y. Angew Chem Int Ed Engl 2010;49:
1500e3.
[3] Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, et al. Adv Mater 2010;22:1e4.
[4] Gunes S, Neugebauer H, Sariciftci NS. Chem Rev 2007;107:1324e38.
[5] Liang Y, Feng D, Wu Y, Tsai ST, Li G, Ray C, et al. J Am Chem Soc 2009;131:
7792e9.
[6] Liang Y, Wu Y, Feng D, Tsai ST, Son HJ, Li G, et al. J Am Chem Soc 2009;131:
56e7.
Fig. 9 depicts the external quantum efficiency (EQE) curves of
the PSCs based on copolymers:PC71BM (w/w ¼ 1:3). It is apparent
that all PSCs exhibited a broad response range, coving from 350 to
700 nm, which indicated that the copolymer and PC71BM all
contributed to the photo-electronic conversion. Obviously, the
PMLT2T/PC71BM-based PSC shows the higher EQE value of 60% at
ca. 460 nm. The higher EQE of the device based on PMLT2T than
that on PMLTQT or PMLT3T is consistent with the higher Jsc value
obtained from the IeV measurements. To evaluate the accuracy of
the photovoltaic results, the Jsc values were calculated by inte-
grating the EQE data with the AM 1.5G reference spectra. The Jsc
values obtained using integration and IeV measurements are
similar. For example, the calculated Jsc value of the device based on
PMLT3T was 7.38 mA cmꢁ2, while the value obtained from the IeV
measurement was 7.4 mA cmꢁ2 (Table 3). The EQE results indicate
that the photovoltaic results are reliable.
[7] Zhou H, Yang L, Price S, Knight K, You W. Angew Chem Int Ed 2010;49:
7992e5.
[8] Woo C, Beanjunge P, Holcombe T, Lee O, Frechet JM. J Am Chem Soc 2010;132:
15547e9.
[9] Cheng Y, Yang S, Hsu C. Chem Rev 2009;109:5868e923.
[10] Koezuka H, Tsumura A, Ando T. Synthetic Met 1987;18(1):699e704.
[11] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, et al. Nat Mater 2005;
4(11):864e8.
[12] Reyes-Reyes M, Kim K, Dewald J, Lopez-Sandoval R, Avadhanula A, Curran S,
et al. Org Lett 2005;7:5749e52.
[13] Ma W, Yang C, Gong X, Lee K, Heeger AJ. Adv Funct Mater 2005;15:
1617e22.
[14] Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, et al. Nat Mater
2006;5:197e203.
[15] Bundgaard E, Krebs FC. Sol Energ Mater Sol Cell 2007;91:1019e25.
[16] Hou J, Chem HY, Zhang S, Li G, Yang Y. J Am Chem Soc 2008;130:16144e5.
[17] Hou J, Park MH, Zhang S, Yao Y, Chen LM, Li JH, et al. Macromolecules 2008;
41:6012e8.
[18] Price SC, Stuart AC, You W. Macromolecules 2010;43:4609e12.
[19] Huo LH, Chen HY, Hou J, Chen TL, Yang Y. Chem Commun; 2009:5570e2.
[20] Wienk MM, Turbiez M, Gilot J, Janssen R. Adv Mater 2008;20:2556e60.
[21] Chen GY, Chiang CM, Kekuda D, Lan SC, Chu CW, Wei KH. J Polym Sci Part A
Polym Chem 2010;48:1669e75.
4. Conclusion
[22] Kitazawa D, Watanabe N, Yamamoto S, Tsukamoto J. Appl Phys Lett 2009;95:
053701e3.
[23] Lee JY, Shin WS, Haw JR, Moon DK. J Mater Chem 2009;19:4938e45.
[24] Hou L, Tan Z, Wang X, Zhou Y, Han M, Li Y. J Polym Sci Part A Polym Chem
2008;46:4038e49.
[25] Zhu Y, Champion RD, Jenekhe SA. Macromolecules 2006;39:8712e9.
[26] Ashraf RS, Hoppe H, Shahid M, Gobsch G, Sensfuss S, Klemm E. J Polym Sci Part
A Polym Chem 2006;44:6952e61.
[27] Xia Y, Luo J, Deng X, Li X, Li D, Zhu X, et al. Macromol Chem Phys 2006;207:
511e20.
[28] Katz HE, Lovinger AJ, Johnson J, Llock C, Siegrist T, Li W, et al. Nature (London)
2000;404:478e81.
[29] Malenfant PRL, Dimitrakopoulos GJD, Kosbar LL, Graham TO, Curioni A,
Andreoni W. Appl Phys Lett 2002;80:2517e9.
[30] Unni KNN, Pandey AK, Nunzi JM. Chem Phys Lett 2005;407:95e9.
[31] Chen HZ, Shi MM, Aernouts T, Wang M, Borghs G, Heremans P. Sol Energ
Mater Sol Cell 2005;87:521e7.
[32] Yang NC, Suh DH. Macromol Rapid Comm 2001;22:335e8.
[33] Yang NC, Park YH, Suh DH. React Funct Polym 2002;51:121e7.
[34] Lee JK, Yang NC, Choi HW, Suh DH. Macromol Res 2003;11:92e7.
[35] Yang NC, Suh DH. Polymer 2001;42:7987e92.
[36] Peng Q, Lu Z, Huang Y, Xie M, Xiao D, Zou D. J Mater Chem 2003;13:1570e4.
[37] Wu WC, Yeh HC, Chan LH, Chen CT. Adv Mater 2002;14:1072e5.
[38] Yeh HC, Chan LH, Wu WC, Chen CT. J Mater Chem 2004;14:1293e8.
[39] Yeh HC, Wu WC, Chen CT. Chem Commun; 2003:404e5.
[40] Yeh HC, Wu WC, Wen YS, Dai DC, Wang JK, Chen CT. J Org Chem 2004;69:
6455e62.
[41] Chan LH, Lee YD, Chen CT. Tetrahedron 2006;62:9541e7.
[42] Chan LH, Lee YD, Chen CT. Macromolecules 2006;39:3262e9.
[43] Chan LH, Lee YD, Chen CT. Org Electron 2006;7:55e9.
[44] Wang HJ, Chan LH, Chen CP, Lin SL, Lee RH, Jeng RJ. Polymer 2011;52:326e38.
[45] Wang HJ, Chan LH, Chen CP, Lee RH, Su WC, Jeng RJ. Thin Solid Films 2011;
519:5264e9.
[46] Lim E, Jung BJ, Shim HK. Macromolecules 2003;36:4288e93.
[47] Tang W, Ke L, Tan L, Lin T, Kietzke T, Chen ZK. Macromolecules 2007;40:
6164e71.
[48] Bijleveld JC, Verstrijden RAM, Wienk MM, Janssen RAJ. J Mater Chem 2011;21:
9224e31.
In summary, we synthesized three new random D-A conjugated
copolymers (PMLTQT, PMLT2T, and PMLT3T) containing a mal-
eimide derivative as an acceptor unit and a donor unit of BTT, 2T, or
3T, by Stille cross-coupling polymerization reactions. The synthe-
sized copolymers exhibited good solubility and good absorption in
the visible region. By incorporating fused thiophene rings into the
polymer backbone, the coplanarity and effective conjugated length
can be enhanced. The electrochemical data indicated the fused
thiophene rings incorporated into the polymer backbone would
reduce the delocalization along the backbone and thus resulted in
a lowering of the polymer HOMO level. The relatively low HOMO
energy levels promised good air stability and high Voc for photo-
voltaic cells application. Moreover, the coplanarity provides suffi-
cient space for PC61BM or PC71BM percolation, which leads to
a smooth morphology as demonstrated by the AFM measurements.
Improved compatibility was observed for both PMLT2T/PC61BM (or
PC71BM) and PMLT3T/PC61BM (or PC71BM) blend films as compared
to the PMLTQT/PC61BM (or PC71BM) blend film. PV devices based on
copolymer/PC61BM (or PC71BM) blend films spin-coated from o-
dichlorobenzene solution were investigated. Preliminary studies
revealed that PV cells with blends of PMLT3T and PC71BM (1:3, w/
w) as the active layer afforded the best performance among these
copolymers, which implies that better compatibility would lead to
better film morphology thus enhance the PSC efficiency. The PV
results clearly demonstrated that BrML derivative is promising
electron-accepting unit for constructing D-A copolymers. A higher
PCE can be achieved through the careful engineering of devices by
varying factors such as layer thickness, additives, and post-
production treatment conditions.
[49] Huang X, Zhu C, Zhang S, Li W, Guo Y, Zhan X, et al. Macromolecules 2008;41:
6895e902.
[50] Liu Y, Di CA, Du C, Liu Y, Lu K, Qiu W, et al. Chem Eur J 2010;16:2231e9.
[51] Patil AV, Lee WH, Lee E, Kim K, Kang IN, Lee SH. Macromolecules 2011;44:
1238e41.
Acknowledgments
[52] Lu HF, Chan HAO, Ng SC. Macromolecules 2003;36:1543e52.
[53] Kobayashi K, Sugie A, Takahashi M, Masui K, Mori A. Org Lett 2005;7:5083e5.
[54] Takahashi M, Masui K, Sekiguchi H, Kobayashi N, Mori A, Funahashi M, et al.
J Am Chem Soc 2006;128:10930e3.
[55] Hoffmann KJ, Bakken E, Samuelsen EJ, Carlsen PHJ. Synthetic Met 2000;113:
39e44.
Financial support from the National Science Council of Taiwan
(ROC) through NSC 97-2113-M-260-003-MY2, and NSC 99-2113-M-
260-006 is gratefully acknowledged. The authors sincerely thank to
Prof. Chin-Ti Chen and Dr. Hung-Yang Chen at Institute of Chem-
istry, Academia Sinica, for assistance in the EQE measurements.