LETTER
(7Z,11Z,13E)-Hexadecatrienal and (8E,18Z)-Tetradecadiena
Bento, J. M. S.; Vilela, E. F.; Leal, W. S. Florida
583
fore.15 The overall yield of the target product 2 from alde-
hyde 3 was 47%; the overall yield of the product 2 from
acrolein was 23%. Because of the high isomeric purity of
aldehyde 3, the present synthesis achieved a high stereo-
selectivity (99% isomeric purity).
Entomologist 2006, 89, 274.
(6) Vang, L. V.; Islam, M. A.; Do, N. D.; Hai, T. V.; Koyano, S.;
Okahana, Y.; Ohbayashi, N.; Yamamoto, M.; Ando, T.
J. Pestic. Sci. 2008, 33, 152.
(7) Biobest Technical sheet. Pheromone of horse-chestnut leaf
miner (www.biobest.be).
(8) Grodner, J. Tetrahedron 2009, 65, 1648.
a
(9) (a) Svatos, A.; Kalinova, B.; Hoskovec, M.; Kindl, J.;
Hovorka, O.; Hrdy, I. Tetrahedron Lett. 1999, 40, 7011.
(b) Hoskovec, M.; Saman, D.; Svatos, A. Collect. Czech.
Chem. Commun. 2000, 65, 511.
(10) Francke, W.; Franke, S.; Bergman, J.; Tolasch, T.; Subchev,
M.; Mircheva, A.; Toshova, T.; Svatos, A.; Kalinova, B.;
Karpati, Z.; Szocs, G.; Toth, M. Z. Naturforsch., C: J. Biosci.
2002, 57, 739.
Br
CHO
Br
3
11
b
c
12
13
2
HO
d
OHC
(11) Figueiredo, R. M.; Berner, R.; Julis, J.; Liu, T.; Turp, D.;
Christmann, M. J. Org. Chem. 2007, 72, 640.
(12) Tao, Y. H.; Cheng, W. X.; Zhang, Y. S.; Gu, K. Chem. J.
Chin. Univ. 2005, 26, 1072.
(13) Toru Nakayama, T.; Mori, K. Liebigs Ann./Rec1. 1997, 839.
(14) Wang, Z.; Lu, X.; Lei, A.; Zhang, Z. J. Org. Chem. 1998, 63,
3806.
Scheme
3
Reagents and conditions: (a) TsNHNH2/ZnCl2–
NaBH3CN, MeOH, 65 °C, 2 h (72%); (b) hept-6-enyl -magnesium
bromide, cat. NiCl2(dppp), THF, r.t., 12 h (91%); (c) (i) 9-BBN, r.t.,
60 min; (ii) H2O2–NaOH, 1.5 h (85%); (d) PCC/Celite, CH2Cl2, r.t., 5
h (84%).
(15) Ragoussis, V.; Perdikaris, S.; Karamolegkos, A.; Magkiosi,
K. J. Agric. Food Chem. 2008, 56, 11929.
(16) Preparation for Tetraene 8
Both synthetic approaches employed low-cost reagents,
familiar operation, and mild conditions, thus the present
strategies may become a more desirable alternative for
both target products in high stereoselectivity and high
yield. The simplicity and the low cost of the present syn-
theses suggest the potentially practical use of the above
pheromones in integrated management programs for both
serious insect pests.
Potassium bis(trimethylsilyl) amide (75 mL, 75 mmol, 1 M
solution in THF) was added dropwise over 30 min to a
suspension of freshly prepared phosphonium salt 7 (33 g, 75
mmol) in dry THF (75 mL) at 0 °C, under nitrogen. The
resulting orange solution was stirred for 1 h at 0 °C and then
cooled to –78 °C. A solution of aldehyde 3 (9.5 g, 50 mmol)
in dry THF (100 mL) was added dropwise over 1 h,
maintaining the temperature below –70 °C. The resulting
yellow solution was allowed to warm slowly to r.t. over a
period of 3 h and left overnight. Then the reaction mixture
was quenched with a sat. solution of NH4Cl (150 mL). After
THF was removed by evaporation, the reaction mixture was
extracted with PE (3 × 40 mL). The extract was washed with
H2O and brine, dried over Na2SO4, and concentrated. The
residue was purified through a silica gel column (eluent: PE)
to afford tetraene 8 as a colorless oil (11.48 g, 85%, isomeric
purity >98%, chemical purity 96%). 1H NMR (500 MHz,
CDCl3): d = 6.97 (ddd, J = 13.3, 11.6, 1.2 Hz, 1 H, CH=CH),
6.32 (dd, J = 13.3, 1.3 Hz, 1 H, CH=CH), 5.93 (ddd,
J = 11.6, 11.1, 1.3 Hz, 1 H, CH=CH), 5.80 (ddt, J = 17.1,
10.1 Hz, 1 H, CH=CH2), 5.43–5.23 (m, 3 H, CH=CH,), 4.98
(d, J = 17.1 Hz, 1 H, Z-CH=CH2), 4.92 (d, J = 10.1 Hz, 1 H,
E-CH=CH2), 2.15–1.95 (m, 8 H, CH2), 1.42–1.32 (m, 4 H,
CH2CH2). 13C NMR (125 MHz, CDCl3): d = 139.3, 133.2,
131.4, 128.9, 128.3, 126.5, 114.6, 109.3, 33.4, 29.5, 28.9,
28.4, 27.5, 26.8. ESI-HRMS: m/z calcd for C14H21Br [M]+:
268.0827; found: 268.0812.
In summary, we have developed highly efficient and ste-
reoselective syntheses of (7Z,11Z,13E)-hexadecatrienal
(1) and (8E,10Z)-tetradecadienal (2) with very good over-
all yield. The stereoselective formation of E,Z-conjugated
double bond relied on cross-coupling between Grignard
reagent and (E,Z)-bromodiene.
Acknowledgment
We gratefully acknowledge State Key Laboratory of Elementoorga-
nic Chemistry, Nankai University (Grant No. 0703) for financial
support.
References and Notes
(1) (a) Heppner, J. B. Trop. Lepid. 1993, 4, 49. (b) Argov, Y.;
Rossler, Y. Phytoparasitica 1996, 24, 33.
(2) (a) Parra-Pedrazzoli, A. L.; Leal, W. S.; Vilela, E. F.;
Mendonca, M. C.; Bento, J. M. S. Pesq. Agropec. Bras.,
Brasília 2009, 44, 676. (b) Leite, R. P. J.; Mohan, S. K.
Brazil Crop Protection 1990, 9, 3.
(3) Mafi, S. A.; Vang, L. V.; Nakata, Y.; Ohbayashi, N.;
Yamamoto, M.; Ando, T. J. Pestic. Sci. 2005, 30, 361.
(4) Leal, W. S.; Parra-Pedrazzoli, A. L.; Cosse, A. A.; Murata,
Y.; Bento, J. M. S.; Vilela, E. F. J. Chem. Ecol. 2006, 32,
155.
(5) (a) Moreira, J. A.; McElfresh, J. S.; Millar, J. G. J. Chem.
Ecol. 2006, 32, 169. (b) Stelinski, L. L.; Miller, J. R.;
Rogers, M. E. J. Chem. Ecol. 2008, 34, 1107. (c) Lapointe,
S. L.; Hall, D. G.; Murata, Y.; Parra-Pedrazzoli, A. L.;
(17) Kumada, M.; Tamao, K.; Sumitani, K. Org. Synth., Coll.
Vol. VI 1988, 407.
(18) Preparation for Tetraene 9
A solution of tetraene 8 (10.72 g, 40 mmol) and NiCl2(dppp)
(54.2 mg, 0.1 mmol) in dry THF (40 mL) was stirred at r.t.
for 30 min under an argon atmosphere. EtMgBr (60 mmol)
in dry THF (60 mL) was added to the mixture cooled in an
ice bath over 30 min. The nickel complex reacts immediately
with the Grignard reagent, and the resulting clear-tan
reaction mixture is allowed to warm up to r.t. with stirring
for 12 h. After the reaction was completed, the mixture was
poured into H2O. After THF was removed by evaporation,
the reaction mixture was extracted with PE (3 × 30 mL). The
extract was washed with H2O and brine, dried over Na2SO4,
© Thieme Stuttgart · New York
Synlett 2012, No. 4, 581–584