A. H. Yap, S. M. Weinreb / Tetrahedron Letters 47 (2006) 3035–3038
3037
azoles 4.13 p-Tolyl vinyl sulfone is presumably formed in
this step, but polymerizes under the reaction conditions.
A few examples of such deprotections are shown in
Table 1.
1,2,3-triazoles. The TSE-protecting group on these
adducts can be removed under mildly basic conditions
via a retro-Michael reaction using potassium tert-
butoxide.
More recently, the Sharpless group has discovered that
Cp*RuCl(PPh3)2 and related ruthenium complexes effi-
ciently catalyze the cycloaddition of alkyl azides with
both terminal and internal alkynes to produce 1,2,3-
triazoles.14 However, it was found that with the ruthe-
nium catalysts, the regioselectivity of the reaction with
terminal alkynes is reversed, leading to 5-substituted-
1,2,3-triazoles. We have applied this new methodology
to cycloadditions of TSE-N3 (2) with alkynes. Thus,
Acknowledgments
We are grateful to the National Institutes of Health
(CA-034303) for financial support of this research. We
also thank Dr. G. Jia for providing details on the prep-
aration of the ruthenium catalyst.
treatment of phenylacetylene with azide
2
and
References and notes
Cp*RuCl(PPh3)2 in refluxing benzene leads to the 5-
phenyl-1,2,3-triazole 5 in good yield (Scheme 2).15 That
adduct 5 is in fact the 5-substitited 1,2,3-triazole was
1. For reviews of 1,2,3-triazoles see: (a) Fan, W.-Q.; Katri-
tzky, A. R. In Comprehensive Heterocyclic Chemistry II;
Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.;
Pergamon Press: Oxford, 1996; Vol. 4, pp 1–126; (b)
Dehne, H. In Methoden der Organischen Chemie (Houben-
Weyl); Schaumann, E., Ed.; Thieme: Stuttgart, 1994; Vol.
E8d, pp 305–405.
2. For reviews see: (a) L’Abbe, G. Chem. Rev. 1969, 69, 345;
(b) Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry;
Padwa, A., Ed.; Wiley: New York, 1984; (c) Sha, C.-K.;
Mohanakrishnan, A. K. In Synthetic Applications of 1,3-
Dipolar Cycloaddition Chemistry Toward Heterocycles and
Natural Products; Padwa, A., Pearson, W. H., Eds.; Wiley:
New York, 2002; p 623.
3. (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.;
Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596;
(b) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org.
Chem. 2002, 67, 3057; (c) Himo, F.; Lovell, T.; Hilgraf, R.;
Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.;
Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210.
4. For reviews of ‘click chemistry’ see: (a) Kolb, H. C.; Finn,
M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40,
2004; (b) Bock, V. D.; Hiemstra, H.; van Maarseveen, J.
H. Eur. J. Org. Chem. 2006, 51.
5. (a) DiPietro, D.; Borzilleri, R. M.; Weinreb, S. M. J. Org.
Chem. 1994, 59, 5856; (b) Borzilleri, R. M.; Weinreb, S.
M.; Parvez, M. J. Am. Chem. Soc. 1995, 117, 10905; (c)
Artman, G. D., III; Waldman, J. H.; Weinreb, S. M.
Synthesis 2002, 2057; (d) Dastrup, D. M.; Yap, A. H.;
Weinreb, S. M.; Henry, J. R.; Lechleiter, A. J. Tetrahedron
2004, 60, 901.
6. For some examples of the use of the TSE group in
protection of preformed nitrogen heterocycles see: (a)
Faubl, H. Tetrahedron Lett. 1979, 491; (b) Gonzalez, C.;
Greenhouse, R.; Tallabs, R.; Muchowski, J. M. Can. J.
Chem. 1983, 61, 1697; (c) Rao, A. K. S. B.; Rao, C. G.;
Singh, B. B. Synth. Commun. 1994, 24, 341; (d) Bashford,
K. E.; Cooper, A. L.; Kane, P. D.; Moody, C. J.
Tetrahedron Lett. 2002, 43, 135.
7. For other examples of synthesis of N-protected 1,2,3-
triazoles via 1,3-dipolar cycloadditions with alkynes see:
(a) Kamijo, S.; Huo, Z.; Jin, T.; Kanazawa, C.; Yama-
moto, Y. J. Org. Chem. 2005, 70, 6389; (b) Katritzy, A. R.;
Takahashi, I.; Marson, C. M.; Scriven, E. F. V. Chem.
Scripta 1987, 28, 149; (c) Jin, T.; Kamijo, S.; Yamamoto,
Y. Eur. J. Org. Chem. 2004, 3789; (d) Wiley, R. H.;
Hussung, K. F.; Moffat, J. J. Org. Chem. 1956, 21, 190.
8. Cf. Bera, S.; Sakthivel, K.; Pathak, T.; Langley, G. J.
Tetrahedron 1995, 51, 7857.
1
established by H NMR NOE experiments.
Similarly, with diphenylacetylene, the protected triazole
6 could be prepared. Removal of the TSE-protecting
groups of 5 and 6 with potassium tert-butoxide under
the usual conditions afforded triazoles 7 and 8,
respectively.
Finally, since the Sharpless group had not reported a
ruthenium-catalyzed cycloaddition of an alkyl azide
with an unsymmetrical internal alkyne,14 we were
prompted to explore the reaction of TSE-N3 with alkyne
9 (Eq. 2). Interestingly, this cycloaddition gave only one
detectable 1,2,3-triazole in moderate yield, which was
proven to be the regioisomer 10 by 1H NMR NOE anal-
ysis. It should also be noted that the cycloaddition of
azide 2 and alkyne 9 does not occur under Cu(I)
catalysis:
Ts
Cp*RuCl(PPh )
PhH, reflux
3 2
N N
N
nOe
MeO C
Bu
+ 2
2
64%
CO Me
9
10
2
ð2Þ
In conclusion, we have demonstrated that readily
prepared b-tosylethylazide undergoes regioselective
cycloadditions with a variety of alkynes under either
copper or ruthenium catalysis to afford N-protected
TSE
Ph
1
Cp*RuCl(PPh )
PhH, reflux
N N
3 2
N
R
Ph
+
2
5
R
5 R = H (77%)
6 R = Ph (63%)
H
N N
N
KOt-Bu
THF
7 R = H (86%)
8 R = Ph (95%)
Ph
-78-0 °C
R
9. We thank David Dastrup for developing this synthesis of
TSE-N3.
Scheme 2.