C O M M U N I C A T I O N S
the phenyl group on the ligand, Rh/(R)-H8-binap provides (R)-
isomers and Rh/(R,R)-Ph-bod* provides (4R)-isomers, respec-
tively.15
In summary, we have developed a rhodium-catalyzed asymmetric
1,4-addition of arylboronic acids to 3-substituted maleimides. The
regioselectivity has been controlled by the choice of ligand (dienes
or bisphosphines), and 1,4-adducts with a quaternary stereocenter
can be obtained with high regio- and enantioselectivity by the use
of (R)-H8-binap.
Figure 1. Proposed stereochemical pathway for the asymmetric 1,4-addition
to a 3-substituted maleimide catalyzed by Rh/(R)-H8-binap.
Acknowledgment. Support has been provided in part by a
Grant-in-Aid for Scientific Research, the Ministry of Education,
Culture, Sports, Science and Technology, Japan (21 COE on Kyoto
University Alliance for Chemistry).
Supporting Information Available: Experimental procedures and
compound characterization data (PDF). This material is available free
Figure 2. Proposed stereochemical pathway for the asymmetric 1,4-addition
to a 3-substituted maleimide catalyzed by Rh/(R,R)-Ph-bod*.
References
(1) (a) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37,
388. (b) Christoffers, J.; Mann, A. Angew. Chem., Int. Ed. 2001, 40, 4591.
(c) Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105. (d) Douglas,
C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363.
(2) (a) Krause, N.; Hoffmann-Ro¨der, A. Synthesis 2001, 171. (b) Feringa, B.
L.; Naasz, R.; Imbos, R.; Arnold, L. A. Modern Organocopper Chemistry;
Krause, N., Ed.; Wiley-VCH: Weinheim, Germany, 2002; p 224. (c)
Hayashi, T.; Yamasaki, K. Chem. ReV. 2003, 103, 8033.
enantioselectivity (97/3, 98% ee; entries 8 and 9). The absolute
configuration of 1,4-adduct 2b-OMe in entry 6 was determined to
be (R) by reducing it to pyrrolidine 5 (eq 3).14
We have also examined the reaction with quinone-based
substrates. For example, 2-methyl-1,4-naphthoquinone (6) under-
goes the 1,4-addition of PhB(OH)2 in the presence of 2.5 mol %
of Rh/(R)-binap, furnishing product 7 in 70% yield with >99% ee
(eq 4).
(3) (a) Wu, J.; Mampreian, D. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2005,
127, 4584. (b) Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2005,
127, 14988. (c) Fillion, E.; Wilsily, A. J. Am. Chem. Soc. 2006, 128,
2774.
(4) (a) d’Augustin, M.; Palais, L.; Alexakis, A. Angew. Chem., Int. Ed. 2005,
44, 1376. (b) Fuchs, N.; d’Augustin, M.; Humam, M.; Alexakis, A.; Taras,
R.; Gladiali, S. Tetrahedron: Asymmetry 2005, 16, 3143.
(5) Mauleo´n, P.; Carretero, J. C. Chem. Commun. 2005, 4961.
(6) For examples of catalytic asymmetric 1,4-addition to maleimides, see:
(a) Shintani, R.; Ueyama, K.; Yamada, I.; Hayashi, T. Org. Lett. 2004, 6,
3425. (b) Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T.
Angew. Chem., Int. Ed. 2005, 44, 4611.
(7) (a) Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.;
Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584. (b) Otomaru, Y.;
Okamoto, K.; Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503.
(c) Shintani, R.; Kimura, T.; Hayashi, T. Chem. Commun. 2005, 3213.
(d) Shintani, R.; Okamoto, K.; Hayashi, T. Chem. Lett. 2005, 1294. (e)
Shintani, R.; Okamoto, K.; Hayashi, T. Org. Lett. 2005, 7, 4757. (f)
Nishimura, T.; Yasuhara, Y.; Hayashi, T. Org. Lett. 2006, 8, 979.
(8) (a) Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. J.
Am. Chem. Soc. 2005, 127, 54. (b) Shintani, R.; Tsurusaki, A.; Okamoto,
K.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44, 3909. (c) Hayashi, T.;
Tokunaga, N.; Okamoto, K.; Shintani, R. Chem. Lett. 2005, 1480. (d)
Chen, F.-X.; Kina, A.; Hayashi, T. Org. Lett. 2006, 8, 341.
(9) (a) Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem.
Soc. 2003, 125, 11508. (b) Otomaru, Y.; Tokunaga, N.; Shintani, R.;
Hayashi, T. Org. Lett. 2005, 7, 307. (c) Otomaru, Y.; Kina, A.; Shintani,
R.; Hayashi, T. Tetrahedron: Asymmetry 2005, 16, 1673. (d) Kina, A.;
Ueyama, K.; Hayashi, T. Org. Lett. 2005, 7, 5889. (e) Fischer, C.; Defieber,
C.; Suzuki, T.; Carreira, E. M. J. Am. Chem. Soc. 2004, 126, 1628. (f)
Defieber, C.; Paquin, J.-F.; Serna, S.; Carreira, E. M. Org. Lett. 2004, 6,
3873. (g) Paquin, J.-F.; Defieber, C.; Stephenson, C. R. J.; Carreira, E.
M. J. Am. Chem. Soc. 2005, 127, 10850. (h) Paquin, J.-F.; Stephenson,
C. R. J.; Defieber, C.; Carreira, E. M. Org. Lett. 2005, 7, 3821. (i) La¨ng,
F.; Breher, F.; Stein, D.; Gru¨tzmacher, H. Organometallics 2005, 24, 2997.
(j) Grundl, M. A.; Kennedy-Smith, J. J.; Trauner, D. Organometallics
2005, 24, 2831.
(10) For examples of a ligand-dependent regiocontrol in transition-metal-
catalyzed processes, see: (a) Tsukamoto, H.; Ueno, T.; Kondo, Y. J. Am.
Chem. Soc. 2006, 128, 1406. (b) Miller, K. M.; Jamison, T. F. J. Am.
Chem. Soc. 2004, 126, 15342.
(11) Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.;
Taketomi, T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629.
(12) (a) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J.
Am. Chem. Soc. 1998, 120, 5579. (b) Hayashi, T.; Takahashi, M.; Takaya,
Y.; Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 5052.
The observed regioselectivity in these 1,4-additions to 3-substi-
tuted maleimides can be explained as follows. In the presence of a
rhodium catalyst bearing (R)-H8-binap (Figure 1), due to the severe
steric repulsion between the substituent R on maleimide and the
phenyl group sticking out from the phosphorus atom of the ligand,
maleimide preferentially coordinates to rhodium, keeping its R
group away from the ligand phenyl group, leading to the selective
formation of 2.
In contrast, in the presence of (R,R)-Ph-bod* (Figure 2), the
upward orientation of the phenyl substituent on the diene ligand
significantly reduces the steric repulsion with the R group on
maleimide. As a result, the steric hindrance between an aryl group
on the rhodium and the R group on maleimide becomes the
dominant factor, leading to selective insertion of maleimide toward
the formation of 3.
(13) Zhang, X.; Mashima, K.; Koyano, K.; Sayo, N.; Kumobayashi, H.;
Akutagawa, S.; Takaya, H. Tetrahedron Lett. 1991, 32, 7283.
(14) See Supporting Information for details. Compounds trans-4 and cis-4:
(a) Andre´s, C.; Duque-Soladana, J. P.; Pedrosa, R. J. Org. Chem. 1999,
64, 4282. Compound 5: (b) Arzel, P.; Freida, V.; Weber, P.; Fadel, A.
Tetrahedron: Asymmetry 1999, 10, 3877.
(15) Currently, we do not fully understand the exact factors that determine the
ratio of trans and cis in the formation of 1,4-adducts 3.
With regard to the absolute configurations, to avoid the unfavor-
able steric interaction between the imide moiety of maleimide and
JA061430D
9
J. AM. CHEM. SOC. VOL. 128, NO. 17, 2006 5629