G. S. Hassan et al. / Bioorg. Med. Chem. Lett. 22 (2012) 6318–6323
6323
4. Karpov, K. A.; Nazarenko, A. V.; Pekarevskii, B. V.; Potekhin, V. M. Russ. J. Appl.
chem. 2001, 74, 998.
5. Baselt, T.; Rehse, K. Arch. der pharmazie. 2008, 24, 645.
6. Karade, H. N.; Acharya, B. N.; Manisha, S.; Kaushik, M. P. Med. Chem. Res. 2008,
17, 19.
piperazine or N-phenyl-piperazine showed antitumor activity as
exemplified by compounds 11, 15, 24, 31 and 34.
Replacement of the 2-chloroacetamide function of 18 and 27 by
3-chloro-propanamide produced compound 19 and compound 28,
respectively with broad spectrum antitumor activity. Displace-
ment of the chlorine atom of 3-chloropropanamide function of
19 and 28 with variety of secondary amines produced 3-substi-
tuted amino-propanamide analogs with either abolished or dimin-
ished activity. Only compounds bearing N-methyl-piperazine or N-
phenyl-piperazine proved to be active with diminished potency as
shown in 14, 23, 25, and 34.
In general, the length of the carbon chain linking the 1,3-thia-
zole nucleus to the terminal secondary amines proved crucial
and manipulates the antitumor activity. The propanamide three
carbon lengths favor the activity (compounds 19 and 28) rather
than the acetamide two carbon lengths (compounds 18 and 27).
Also, it was proven that bearing either electron withdrawing (4-
bromo- or 4-chloro-) or electron donating (4-methyl-) substituent
at the 4-phenyl function did not affect the magnitude of antitumor
potency of such analogs.
In conclusion, an interesting class of 1,3-thiazole analogs bear-
ing 2-acylamino substituent with different carbon chain length and
4-(4-substitutedphenyl) was designed and synthesized. Antitumor
evaluation indicated different pharmacological profiles of these
new compounds which substantiate the merits of further explora-
tion. Results revealed that the three carbon chain connecting the
thiazole nucleus to the secondary amines has an impact on antitu-
mor activity. 3-chloro-N-[4-(4-chlorophenyl)-1,3-thiazol-2-yl]pro-
7. Hurley, L. H. Nat. Rev. Cancer 2002, 2, 188.
8. Cai, X.; Gray, P. J., Jr.; Von Hoff, D. D. Cancer Treat. Rev. 2009, 35, 37.
9. Bailly, C.; Ke´nani, A.; Waring, M. J. Nucleic Acids Res. 1997, 25, 1516.
10. Yamamoto, K.; Kawanishi, S. Biochem. Biophys. Res. Commun. 1992, 183, 292.
11. Ahn, J. H.; Kim, S. J.; Park, W. S.; Cho, S. Y.; Ha, J. D.; Kim, S. S.; Kang, S. K.; Jeong,
D. G.; Jung, S.-K.; Lee, S.-H.; Kim, H. M.; Park, S. K.; Lee, K. H.; Lee, C. W.; Ryu, S.
E.; Choi, J.-K. Bioorg. Med. Chem. Lett. 2006, 16, 2996.
12. Park, H.; Jung, S.-K.; Jeong, D. G.; Ryu, S. E.; Kim, S. J. Bioorg. Med. Chem. Lett.
2008, 18, 2250.
13. Geronikaki, A.; Eleftheriou, P.; Vicini, P.; Alam, I.; Dixit, A.; Saxena, A. K. J. Med.
Chem. 2008, 51, 5221.
14. Cutshall, N. S.; O’Day, C.; Prezhdo, M. Bioorg. Med. Chem. Lett. 2005, 15, 3374.
15. Carter, P. H.; Scherle, P. A.; Muckelbauer, J. A.; Voss, M. E.; Liu, R.-Q.; Thompson,
L. A.; Tebben, A. J.; Solomon, K. A.; Lo, Y. C.; Li, Z.; Strzemienski, P.; Yang, G.;
Falahatpisheh, N.; Xu, M.; Wu, Z.; Farrow, N. A.; Ramnarayan, K.; Wang, J.;
Rideout, D.; Yalamoori, V.; Domaille, P.; Underwood, D. J.; Trzaskos, J. M.;
Friedman, S. M.; Newton, R. C.; Decicco, C. P. Proc. Natl. Acad. Sci. U.S.A. 2001, 98,
11879.
16. Degterev, A.; Lugovskoy, A.; Cardone, M.; Mulley, B.; Wagner, G.; Mitchison, T.;
Yuan, J. Nat. Cell Biol. 2001, 3, 173.
17. Dayam, R.; Aiello, F.; Deng, J.; Wu, Y.; Garofalo, A.; Chen, X.; Neamati, N. J. Med.
Chem. 2006, 49, 4526.
18. Zheng, W.; Degterev, A.; Hsu, E.; Yuan, J.; Yuan, C. Bioorg. Med. Chem. Lett. 2008,
18, 4932.
19. Kok, S. H. L.; Gambari, R.; Chui, C. H.; Yuen, M. C. W.; Lin, E.; Wong, R. S. M.; Lau,
F. Y.; Cheng, G. Y. M.; Lam, W. S.; Chan, S. H.; Lam, K. H.; Cheng, C. H.; Lai, P. B.
S.; Yu, M. W. Y.; Cheung, F.; Tang, J. C. O.; Chan, A. S. C. Bioorg. Med. Chem. 2008,
16, 3626.
20. Wang, X.; Sarris, K.; Kage, K.; Zhang, D.; Brown, S. P.; Kolasa, T.; Surowy, C.; El
Kouhen, O. F.; Muchmore, S. W.; Brioni, J. D.; Stewart, A. O. J. Med. Chem. 2009,
52, 170.
21. Song, E. Y.; Kaur, N.; Park, M.-Y.; Jin, Y.; Lee, K.; Kim, G.; Lee, K. Y.; Yang, J. S.;
Shin, J. H.; Nam, K.-Y.; No, K. T.; Han, G. Eur. J. Med. Chem. 2008, 43, 1519.
22. Zheng, C.-H.; Zhou, Y.-J.; Zhu, J.; Ji, H.-T.; Chen, J.; Li, Y.-W.; Sheng, C.-Q.; Lu, J.-
G.; Jiang, J.-H.; Tang, H.; Song, Y.-L. Bioorg. Med. Chem. 2007, 15, 6407.
23. Chen, L.; Pankiewicz, K. W. Curr. Opin. Drug Discov. Devel. 2007, 10, 403.
24. Popsavin, M.; Spaic´, S.; Svircev, M.; Kojic´, V.; Bogdanovic´, G.; Popsavin, V.
Bioorg. Med. Chem. Lett. 2007, 1, 4123.
25. Foy, W. O.; Lemka, T. L.; Williams, D. A. Principles of medicinal chemistry, 5th
Edition; Williams and Wilkins: Media PA, USA, 2008.
26. Wolter, F. E.; Molinari, L.; Socher, E. R.; Schneider, K.; Nicholson, G.; Beil, W.;
Seitz, O.; Süssmuth, R. D. Bioorg. Med. Chem. Lett. 2009, 15, 3811.
27. Silvermann, R. B. The organic chemistry of drug design and drug action; Academic
Press: London, 1992. p 263.
28. Nelson, S. M.; Ferguson, L. R.; Denny, W. A. Mutat. Res. 2007, 1(623), 24.
29. Plouvier, B.; Houssin, R.; Helbecque, N.; Colson, P.; Houssier, C.; Hénichart, J. P.;
Bailly, C. Anticancer Drug Des. 1995, 10, 155.
panamide
(19)
and
3-chloro-N-[4-(4-tolyl)-1,3-thiazol-2-
yl]propanamide (28), displayed broad-spectrum antitumor po-
tency. Compound 19 proved to be ninefold more active than 5-
FU, with MG-MID GI50, TGI, and LC50 values of 2.8, 11.4, 44.7,
respectively; whereas Compound 28 proved to be sevenfold more
active than 5-FU, with MG-MID GI50, TGI, and LC50 values of 3.3,
13.1, 46.8, respectively. The obtained antitumor potency using 4-
aromatic substituent on the 1,3-thiazole core could be considered
as useful template for future development and further derivatiza-
tion or modification to obtain more potent and selective antitumor
agents.
30. Delgado, J. N.; Remers, W. A. Textbook of organic medicinal and pharmaceutical
chemistry, 10th Edition; Lippincott JB Co: PA, USA, 1998.
31. Abraham, A. T.; Lin, J. J.; Newton, D. L.; Rybak, S.; Hecht, S. M. Chem. Biol. 2003,
10, 45.
32. Da Rocha, A. B.; Lopes, R. M.; Schwartsmann, G. Curr. Opin. Pharmacol. 2001, 1,
364.
33. Schnur, R. C.; Gallaschun, R. J.; Singleton, D. H. J. Med. Chem. 1975, 1991, 34.
34. Kumar, Y.; Green, R.; Barysko, K. Z.; Wise, D. S.; Wotring, L. L.; Townsend, L. B. J.
Med. Chem. 1993, 36, 3843.
35. El-Subbagh, H. I.; El-Naggar, W. A.; Badria, F. A. Med. Chem. Res. 1994, 3, 503.
36. El-Subbagh, H. I.; Al-Obaid, A. M. Eur. J. Med. Chem. 1996, 31, 1017.
37. El-Subbagh, H. I.; Abadi, A. H.; Lehmann, J. Arch. Pharm. Pharm. Med. Chem.
1999, 332, 137.
Acknowledgements
Thanks are due to the NCI, Bethesda, MD, USA for performing
the antitumor testing of the synthesized compounds.
Supplementary data
Supplementary data associated with this article can be found,
38. El-Subbagh, H. I.; Al-Khawad, I. E.; El-Bendary, E. R.; Al-Obaid, A. M. Saudi
Pharm. J. 2001, 9, 14.
39. Al-Omary, F. A.; Hassan, G. S.; El-Messery, S. M.; El-Subbagh, H. I. Eur. J. Med.
Chem. 2012, 47, 65.
40. El-Messery, S. M.; Hassan, G. S.; Al-Omary, F. A.; El-Subbagh, H. I. Eur. J. Med.
Chem. 2012, 54, 615.
41. Grever, M. R.; Schepartz, S. A.; Chabner, B. A. Semin. Oncol. 1992, 19, 622.
42. Monks, A.; Scudiero, D.; Skehan, P. J. Natl Cancer Inst. 1991, 83, 757.
43. Boyd, M. R.; Paull, K. D. Drug Dev. Res. 1995, 34, 91.
44. Bhargava, P. N.; Hulganram, P.; Simgh, K. I. J. Indian Chem. Soc. 1962, 39, 396.
References and notes
1. Ulusoy, N.; Kiraz, M.; Kucukbasmaci, O. Monatshefte fur chemie. 2002, 133,
1305.
2. Kaplancikli, Z. A.; Zitouni, G. T.; Revial, G.; Guven, K. Arch. pharm. Res. 2004, 27,
1081.
3. Al-Saddi, M. S.; Faidallah, H. M.; Rostom, S. A. F. Arch. Pharm. Chem. Life Sci.
2008, 341, 424.