C O M M U N I C A T I O N S
the neuronal cells was induced after treatment with SIN-1 (10 µM)
(Figure 2B), but not with either SNAP (Figure 2C) or xanthine/
xanthine oxidase (Figure 2D). Thus, we conclude that HKGreen-1
can be used for the selective detection of peroxynitrite produced
in cultured cells.
In summary, we have developed a new fluorescent probe
HKGreen-1 that is effective for the highly selective detection of
peroxynitrite in living cells. We anticipate that this simple, sensitive
fluorescent probe will be of great benefit for biomedical researchers
investigating the effects of peroxynitrite in biological systems.
Figure 1. (A) Fluorescence response of 20 µM HKGreen-1 to ONOO-.
Spectra were acquired in 0.1 M potassium phosphate buffer at pH 7.3 (λex
) 490 nm). Inset: A linear correlation between emission intensity and
concentrations of ONOO-. (B) Fluorescence intensity of HKGreen-1 (20
µM) in various ROS/RNS (300 µM) generating systems at 25 °C for 1 h.
The fluorescence intensity was determined at 521 nm with excitation at
490 nm (slit width 2.5 nm).
Acknowledgment. We thank The University of Hong Kong,
Hong Kong Research Grants Council (HKU7060/05P and HKU7495/
04M), the Area of Excellence Scheme (AoE/P-10-01) established
under the University Grants Committee (HKSAR), and Bristol-
Myers Squibb Foundation (in the form of the Unrestricted Grant
in Synthetic Organic Chemistry to D.Y.) for financial support. We
dedicate this work to Professor Ronald Breslow (Columbia
University) on the occasion of his 75th birthday.
Supporting Information Available: Experimental details on the
synthesis and characterization of HKGreen-1. This material is available
References
(1) Beckman, J. S.; Beckman, T. W.; Chen, J.; Marshall, P. A.; Freeman, B.
A. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 1620-1624.
(2) Ara, J.; Przedborski, S.; Naini, A. B.; Jackson-Lewis, V.; Trifiletti, R.
R.; Horwitz, J.; Ischiropoulos, H. Proc. Natl. Acad. Sci. U.S.A. 1998, 95,
7659-7663.
Figure 2. Fluorescence imaging of primary cultured neuronal cells. Left:
phase contrast imaging. Right: fluorescence imaging. The neuronal cells
were incubated with HKGreen-1 (20 µM) for 15 min and then subjected
to different treatments. (A) Control. (B) 10 µM of SIN-1. (C) 10 µM of
SNAP. (D) 100 µM of xanthine and 0.1 IU of xanthine oxidase.
(3) Klebl, B. M.; Ayoub, A. T.; Pette, D. FEBS Lett. 1998, 422, 381-384.
(4) MacMillan-Crow, L. A.; Greendorfer, J. S.; Vickers, S. M.; Thompson,
J. A. Arch. Biochem. Biophys. 2000, 377, 350-356.
(5) Kaur, H.; Halliwell, B. FEBS Lett. 1994, 350, 9-12.
(6) Coddington, J. W.; Hurst, J. K.; Lymar, S. V. J. Am. Chem. Soc. 1999,
121, 2438-2443.
ROO•, -OCl, and ONOO-. Figure 1B indicates that a 7- to 8-fold
increase in fluorescence intensity was observed when HKGreen-1
reacted with 15 equiv of peroxynitrite, whereas the reactions with
NO, 1O2, O2•-, and H2O2 each led to an increase that was less than
1-fold. Although the presence of •OH induced a ca. 3-fold increase
of fluorescence intensity, this response was weaker than that which
occurred in the presence of peroxynitrite. Thus, HKGreen-1 appears
to be a highly selective fluorescent probe for the detection of
peroxynitrite.
Next, we used primary cultured neuronal cells to investigate the
potential of HKGreen-1 for use in the detection of peroxynitrite
in living cells.19 We monitored the fluorescence images from
neuronal cells treated with different oxidants, namely the peroxy-
nitrite donor SIN-1, the NO donor SNAP, and the superoxide donor
xanthine/xanthine oxidase. The neuronal cells were incubated with
HKGreen-1 (20 µM) for 15 min and then washed three times with
PBS buffer. As expected, we did not observe any fluorescent cells
in the absence of stimulants (Figure 2A). Strong fluorescence in
(7) Squadrito, G. L.; Pryor, W. A. Free Radical Biol. Med. 1998, 25, 392-
403.
(8) Dean, R. T.; Fu, S.; Stocker, R.; Davies, M. J. Biochem J. 1997, 324,
1-18.
(9) Wiseman, H.; Halliwell, B. Biochem. J. 1996, 313, 17-29.
(10) Midori, A.; Yenari, M. D. CleVeland Clin. J. Med. 2004, 71, S25-S27.
(11) Kossenjans, W.; Eis, A.; Sahay, R.; Brochman, D.; Myatt, L. Am. J.
Physiol.: Heart Circ. Physiol. 2000, 278, 1311-1319.
(12) Supinski, G.; Stofan, D.; Callahan, L. A.; Nathery, D.; Nosek, T. M.;
DiMarco, A. J. Appl. Physiol. 1999, 87, 783-791.
(13) Liu, P.; Xu, B. H.; Quilley, J.; Wong, P. Y. K. Am. J. Physiol.: Cell
Physiol. 2000, 279, 1970-1977.
(14) White, C. R.; Brock, T. A.; Chang, L.; Crapo, J.; Briscoe, P.; Ku, D.;
Bradley, W. A.; Gianturco, S. H.; Gore, J.; Freeman, B. A.; Tarpey, M.
M. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 1044-1048.
(15) Beckman, J. S.; Carson, M.; Smith, C. D.; Koppenol, W. H. Nature 1993,
364, 584-585.
(16) Setsukinai, K. I.; Urano, Y.; Kakunuma, K.; Majima, H. J.; Nagano, T. J.
Biol. Chem. 2003, 278, 3170-3175.
(17) Yang, D.; Wong, M. K.; Yan, Z. J. Org. Chem. 2000, 65, 4179-4184.
(18) Yang, D.; Tang, Y.-C.; Chen, J.; Wang, X.-C.; Bartberger, M. D.; Houk,
K. N.; Olson, L. J. Am. Chem. Soc. 1999, 121, 11976-11983.
(19) Furuichi, T.; Liu, W.; Shi, H.; Miyake, M.; Liu, K. J. J. Neurosci. Res.
2005, 79, 816-824.
JA0603756
9
J. AM. CHEM. SOC. VOL. 128, NO. 18, 2006 6005