Organic Letters
Letter
1987, 43, 2523. (f) Shull, B. K.; Sakai, T.; Nichols, J. B.; Koreeda, M. J.
Org. Chem. 1997, 62, 8294.
ACKNOWLEDGMENTS
■
The authors thank Central Glass Co., Ltd. for providing Tf2O.
This research was supported by JSPS KAKENHI Grant Number
15K05509 (T.N.) and a Special Postdoctoral Researchers
Program Fellowship from RIKEN (H.O.).
(7) (a) Martin, S. F.; Dodge, J. A. Tetrahedron Lett. 1991, 32, 3017.
(b) Dodge, J. A.; Trujillo, J. I.; Presnell, M. J. Org. Chem. 1994, 59, 234.
(8) For examples of DMF used as an oxygen nucleophile, see:
(a) Chang, F. C.; Blickenstaff, R. T. J. Am. Chem. Soc. 1958, 80, 2906.
(b) Boerwinkle, F.; Hassner, A. Tetrahedron Lett. 1968, 9, 3921.
(c) Dalton, D. R.; Smith, R. C., Jr.; Jones, D. G. Tetrahedron 1970, 26,
575. (d) Angyal, S. J.; Odier, L. Carbohydr. Res. 1980, 80, 203. (e) Suri,
S. C.; Rodgers, S. L.; Radhakrishnan, K. V.; Nair, V. Synth. Commun.
1996, 26, 1031. (f) Serrano, P.; Llebaria, A.; Delgado, A. J. Org. Chem.
2005, 70, 7829. (g) Jin, C. H.; Lee, H. Y.; Lee, S. H.; Kim, I. S.; Jung,
Y. H. Synlett 2007, 2695. For the review, see: (h) Muzart, J.
Tetrahedron 2009, 65, 8313.
(9) For examples that afforded β-eliminated products under the
conventional stereoinversion conditions, see refs 2d, 2f, 4c, 5i, and 6a.
(10) Stereoinversion of 6a with other nucleophiles such as
carboxylates and nitrite also proceeded to afford the stereoinverted
REFERENCES
■
(1) (a) Mitsunobu, O.; Yamada, M.; Mukaiyama, T. Bull. Chem. Soc.
Jpn. 1967, 40, 935. (b) Mitsunobu, O.; Yamada, M. Bull. Chem. Soc.
Jpn. 1967, 40, 2380. For selected reviews, see: (c) Mitsunobu, O.
Synthesis 1981, 1. (d) Hughes, D. L. Org. React. 1992, 42, 335.
(e) Dandapani, S.; Curran, D. P. Chem. - Eur. J. 2004, 10, 3130.
(f) Dembinski, R. Eur. J. Org. Chem. 2004, 2763. (g) Parenty, A.;
Moreau, X.; Campagne, J.-M. Chem. Rev. 2006, 106, 911. (h) But, T. Y.
S.; Toy, P. H. Chem. - Asian J. 2007, 2, 1340. (i) Swamy, K. C. K.;
Kumar, N. N. B.; Balaraman, E.; Kumar, K. V. P. P. Chem. Rev. 2009,
109, 2551. (j) Fletcher, S. Org. Chem. Front. 2015, 2, 739.
(2) (a) Kruizinga, W. H.; Strijtveen, B.; Kellogg, R. M. J. Org. Chem.
1981, 46, 4321. (b) Torisawa, Y.; Okabe, H.; Ikegami, S. Chem. Lett.
1984, 13, 1555. (c) Willis, C. L. Tetrahedron Lett. 1987, 28, 6705.
(d) Dijkstra, G.; Kruizinga, W. H.; Kellogg, R. M. J. Org. Chem. 1987,
52, 4230. (e) Yan, J.; Bittman, R. J. Lipid Res. 1990, 31, 160.
(f) Akiyama, T.; Takechi, N.; Ozaki, S.; Shiota, K. Bull. Chem. Soc. Jpn.
1992, 65, 366. (g) Senanayake, C. H.; Singh, S. B.; Bill, T. J.;
DiMichele, L. M.; Liu, J.; Larsen, R. D.; Verhoeven, T. R. Tetrahedron
Lett. 1993, 34, 2425. (h) Sato, K.; Yoshitomo, A. Chem. Lett. 1995, 24,
39. (i) Shimizu, T.; Hiranuma, S.; Nakata, T. Tetrahedron Lett. 1996,
37, 6145. (j) Sato, K.; Yoshitomo, A.; Takai, Y. Bull. Chem. Soc. Jpn.
1997, 70, 885. (k) Hawryluk, N. A.; Snider, B. B. J. Org. Chem. 2000,
65, 8379. (l) Shi, X.-X.; Shen, C.-L.; Yao, J.-Z.; Nie, L.-D.; Quan, N.
Tetrahedron: Asymmetry 2010, 21, 277. (m) Glibstrup, E.; Pedersen, C.
M. Org. Lett. 2016, 18, 4424.
(3) The rules for displacement of sulfonates derived from
carbohydrates have been precisely discussed. For recent updates,
see: (a) Hale, K. J.; Hough, L.; Manaviazar, S.; Calabrese, A. Org. Lett.
2014, 16, 4838. (b) Hale, K. J.; Hough, L.; Manaviazar, S.; Calabrese,
A. Org. Lett. 2015, 17, 1738.
(4) For the Lattrell−Dax reaction, a method for stereoinversion of
alcohols for sugar derivatives via the displacement of the triflyloxy
group by a nitrite ion, see: (a) Lattrell, R.; Lohaus, G. Justus Liebigs
(11) In these experiments, even in the case when none of desired
product was provided, we have not observed the formation of alcohol
1a, which might be generated via hydrolysis of triflate 6a.
(12) Formate 8a was gradually hydrolyzed to 9a under these reaction
(14) The small incorporation of 18O in 9a indicated the involvement
of direct SN2 displacement with [18O]H2O as a minor pathway.
(15) For less efficient and unsuccessful substrates for the stereo-
(16) (a) Reivich, M.; Kuhl, D.; Wolf, A.; Greenberg, J.; Phelps, M.;
Ido, T.; Casella, V.; Fowler, J.; Hoffman, E.; Alavi, A.; Som, P.;
Sokoloff, L. Circ. Res. 1979, 44, 127. (b) Hamacher, K.; Coenen, H. H.;
Stocklin, G. J. Nucl. Med. 1986, 27, 235.
̈
(17) It was reported in ref 4d that the presence of an acyl protecting
group adjacent to the hydroxy group was crucial to achieve an efficient
stereoinversion of sugar derivatives using the Lattrel−Dax reaction.
However, we have found that the Lattrel−Dax reaction of 6d and 6e
without a neighboring acyl protecting group proceeded to give the
stereoinverted alcohols 9d and 9e, respectively, in good yields
(18) For the stability of p-methoxyphenyl glycosides under various
acidic conditions, see: Zhang, Z.; Magnusson, G. Carbohydr. Res. 1996,
295, 41.
Ann. Chem. 1974, 901. (b) Albert, R.; Dax, K.; Link, R. W.; Stutz, A. E.
̈
Carbohydr. Res. 1983, 118, C5. (c) Binkley, R. W. J. Org. Chem. 1991,
(19) Stereoinversion of monobenzoyl-protected trans-diol 9j using
the one-pot procedure afforded the corresponding cis-derivataive 1j in
91% yield. However, performing the stereoinversion step using [18O]
H2O afforded 1j with the 18O atom highly incorporated at the carbonyl
group, indicating that the transformation proceeded mainly via the
anchimeric assistance by the benzoyl group (Scheme S6).
(20) The one-pot reaction for stereoinversion of monobenzyl-
protected cis-1,2-cyclopentanediol 1k gave stereoinverted product 9k
only in low yield, and benzyl alcohol was isolated in 42% yield. We also
observed the formation of cyclopentene oxide by GC-MS analysis of
the reaction mixture, indicating that gradually liberated acid triggered
the debenzylation via an intramolecular SN2 reaction.
56, 3892. (d) Dong, H.; Pei, Z.; Ramstrom, O. J. Org. Chem. 2006, 71,
̈
3306. (e) Dong, H.; Pei, Z.; Angelin, M.; Bystrom, S.; Ramstrom, O. J.
̈
̈
Org. Chem. 2007, 72, 3694. For recent examples of synthetic
application of the Lattrel−Dax reaction, see: (f) Emmadi, M.;
Kulkarni, S. S. Nat. Protoc. 2013, 8, 1870. (g) Sanapala, S. R.;
Kulkarni, S. S. J. Am. Chem. Soc. 2016, 138, 4938. (h) Sanapala, S. R.;
Kulkarni, S. S. Org. Lett. 2016, 18, 3790.
(5) (a) Kuzuhara, H.; Fletcher, H. G., Jr J. Org. Chem. 1967, 32, 2535.
(b) David, S.; Lubineau, A.; Vatel
41. (c) Han, O.; Liu, H. Tetrahedron Lett. 1987, 28, 1073.
(d) Kerekgyarto, J.; Szurmai, Z.; Liptak, A. Carbohydr. Res. 1993,
̀
e, J.-M. Carbohydr. Res. 1982, 104,
́
́
́
́
245, 65. (e) Oshitari, T.; Tomita, M.; Kobayashi, S. Tetrahedron Lett.
1994, 35, 6493. (f) Oshitari, T.; Shibasaki, M.; Yoshizawa, T.; Tomita,
M.; Takao, K.; Kobayashi, S. Tetrahedron 1997, 53, 10993.
(g) Nicolaou, K. C.; Fylaktakidou, K. C.; Monenschein, H.; Li, Y.;
Weyershausen, B.; Mitchell, H. J.; Wei, H.-X.; Guntupalli, P.;
Hepworth, D.; Sugita, K. J. Am. Chem. Soc. 2003, 125, 15433.
(h) Wehlan, H.; Dauber, M.; Fernaud, M.-T. M.; Schuppan, J.;
Mahrwald, R.; Ziemer, B.; Garciz, M.-E. J.; Koert, U. Angew. Chem., Int.
Ed. 2004, 43, 4597. (i) Frihed, T. G.; Pedersen, C. M.; Bols, M. Eur. J.
Org. Chem. 2014, 7924.
(6) (a) Corey, E. J.; Terashima, S. Tetrahedron Lett. 1972, 13, 111.
(b) Mitsunobu, O.; Ebina, N.; Ogihara, T. Chem. Lett. 1982, 11, 373.
(c) Ladlow, M.; Pattenden, G.; Teague, S. J. Tetrahedron Lett. 1986,
27, 3279. (d) Hoeger, C. A.; Johnston, A. D.; Okamura, W. H. J. Am.
Chem. Soc. 1987, 109, 4690. (e) Marco, J. A.; Carda, M. Tetrahedron
D
Org. Lett. XXXX, XXX, XXX−XXX