P. Dewi-Wülfing, S. Blechert
FULL PAPER
[2] R. J. Nash, L. E. Fellows, J. V. Dring, G. W. J. Fleet, A. E. De-
rome, T. A. Hamor, A. M. Scofield, D. J. Watkins, Tetrahedron
Lett. 1988, 29, 2487–2490.
[3] R. J. Molyneux, M. Benson, R. Y. Wong, J. E. Tropea, A. D.
Elbein, J. Nat. Prod. 1988, 51, 1198–1206.
(1:1, 1.8 mL) and stirred for 10 min. CM product 2 (169 mg,
0.36 mmol) in tert-butyl alcohol/water (1:1, 1.8 mL) was added and
the mixture was stirred at room temp. for 18 h. Na2SO3 (700 mg)
and water (1 mL) were added, and the mixture was stirred for a
further 1 h and extracted with ethyl acetate (3×10 mL). The com-
bined organic layers were washed sequentially with aqueous NaOH
solution (1 , 2×10 mL), water (2×10 mL), and brine, and dried
with MgSO4, and the solvents were evaporated. Purification by col-
umn chromatography (SiO2, hexane/ethyl acetate, 3:1 Ǟ 3:2) gave
the diol 1 and its diastereomer (isolated yield 122 mg with 115 mg
diol 1, 67% yield) as a clear oil. RF = 0.2 (SiO2, hexane/ethyl ace-
tate, 3:2). [α]2D0 = –10.1 (c = 0.9, CHCl3). 1H NMR (500 MHz,
CDCl3): δ = 0.05 (s, 6 H, SiMe2), 0.86 (s, 9 H, tBu), 1.20–1.29 (m,
1 H, OH), 1.96–2.09 (m, 2 H, 7-H), 2.55–2.82 (m, 2 H, 6-H), 3.70
(dd, J = 10.3 and 5.1 Hz, 1 H, 1-H), 3.74–4.00 (m, 5 H, 2, 9, 10-
H), 4.05 (dd, J = 10.3 and 2.6 Hz, 1 H, 1-H), 4.10 (t, J = 9.0 Hz,
1 H, 3-H), 4.19 (dd, J = 19.4 and 3.6 Hz, 1 H, 4-H), 4.92 (m, 1 H,
[4] A. Kato, I. Adachi, M. Miyauchi, K. Ikeda, T. Komae, H.
Kizu, Y. Kameda, A. A. Watson, R. J. Nash, M. R. Wormald,
G. W. J. Fleet, N. Asano, Carbohydr. Res. 1999, 316, 95–103.
[5] N. Asano, H. Kuroi, K. Ikeda, H. Kizu, Y. Kameda, A. Kato,
I. Adachi, A. A. Watson, R. J. Nash, G. W. J. Fleet, Tetrahe-
dron: Asymmetry 2000, 11, 1–8.
[6] a) M. S. M. Pearson, M. Mathé-Allainmat, V. Fargeas, J. Leb-
reton, Eur. J. Org. Chem. 2005, 11, 2159–2191; b) P. Compain,
O. R. Martin, Bioorg. Med. Chem. 2001, 9, 3077–3092; c) A. A.
Watson, G. W. J. Fleet, N. Asano, R. J. Molyneux, R. J. Nash,
Phytochemistry 2001, 56, 265–295; d) N. Asano, A. Kato, A. A.
Watson, Mini-Rev. Med. Chem. 2001, 1, 145–154; e) N. Asano,
R. J. Nash, R. J. Molyneux, G. W. J. Fleet, Tetrahedron: Asym-
metry 2000, 11, 1645–1680.
8-H), 5.10 (br.s, 2 H, CH2Ph), 5.54 (d, J = 8.5 Hz, 1 H, NH), 7.34 [7] L. Rambaud, P. Compain, O. R. Martin, Tetrahedron: Asym-
(m, 5 H, Ar) ppm. 13C NMR (125 MHz, CDCl3): δ = –5.5 (SiMe2),
18.3 (Si–C), 25.9 [(CH3)3C], 27.2 (C-7), 32.5 (C-6), 54.1 (C-2), 62.1
(C-1), 65.1 (C-9, 10), 67.3 (CH2Ph), 70.7 (C-3), 76.9 (C-4), 103.2
(C-8), 128.3, 128.7, 136.1 (Ar), 157.1 (CO2), 210.4 (C-5) ppm. IR
metry 2001, 12, 1807–1809.
[8] A. Toyao, O. Tamura, H. Takagi, H. Ishibashi, Synlett 2003,
1, 35–38.
[9] F. Cardona, E. Faggi, F. Liguori, M. Cacciarini, A. Goti, Tetra-
hedron Lett. 2003, 44, 2315–2318.
(ATR): ν = 1715, 1509, 1254, 1087, 1046, 779 cm–1. MS (EI,
˜
[10] a) I. Izquierdo, M. T. Plaza, F. Franco, Tetrahedron: Asym-
metry 2004, 15, 1465–1469; b) I. Izquierdo, M. T. Plaza, F.
Franco, Tetrahedron: Asymmetry 2003, 14, 3933–3935; c) I. Iz-
quierdo, M. T. Plaza, F. Franco, Tetrahedron: Asymmetry 2002,
13, 1581–1585; d) I. Izquierdo, M. T. Plaza, R. Robles, F.
Franco, Tetrahedron: Asymmetry 2001, 12, 2481–2487.
[11] J. Gebauer, P. Dewi, S. Blechert, Tetrahedron Lett. 2005, 46,
43–46.
130 °C): m/z (%) = 496 [M – H]+ (Ͻ1%), 91 (100). HRMS ([M –
H], C24H38NO8Si): calcd. 496.2367, found 496.2379.
Data for the Diastereomer of Diol 1: RF = 0.14 (SiO2, hexane/ethyl
1
acetate, 3:2). [α]2D0 = –22.3 (c = 0.4, CHCl3). H NMR (500 MHz,
CDCl3): δ = 0.05 (s, 6 H, SiMe2), 0.85 (s, 9 H, tBu), 1.22–1.32 (m,
1 H, OH), 1.94–2.07 (m, 2 H, 7-H), 2.55–2.82 (m, 2 H, 6-H), 3.70–
4.00 (m, 7 H, 1, 2, 9, 10-H), 4.20 (br.s, 2 H, 3, 4-H), 4.90 (m, 1 H,
8-H), 5.10 (br.s, 2 H, CH2Ph), 5.35 (d, J = 8.5 Hz, 1 H, NH), 7.30
[12] a) C. Huwe, S. Blechert, Synthesis 1997, 61–67; b) C. Huwe,
Dissertation, Berlin, University of Technology, 1996, p. 13.
(m, 5 H, Ar) ppm. 13C NMR (125 MHz, CDCl3): δ = –5.5 (SiMe2), [13] R. Zimmer, Synthesis 1993, 165–178.
[14] a) S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J.
18.2 (Si–C), 25.9 [(CH3)3C], 27.4 (C-7), 32.3 (C-6), 54.0 (C-2), 63.9
(C-1), 65.0 (C-9, 10), 67.3 (CH2Ph), 72.5 (C-3), 76.9 (C-4), 103.0
(C-8), 128.3, 128.6, 136.3 (Ar), 176.6 (CO2), 209.3 (C-5) ppm.
Am. Chem. Soc. 2000, 122, 8168–8179; b) S. Gessler, S. Randl,
S. Blechert, Tetrahedron Lett. 2000, 41, 9973–9976.
[15] M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999,
1, 953–956.
(+)-Hyacinthacine A2: Diol
1 (30 mg, 60 µmol) in methanol
(10 mL) was hydrogenated at 4 bar over Pd/C (10%, 7 mg, 6 µmol)
for 3 days. TLC analysis showed that the first cyclization had oc-
curred [RF = 0.47 (SiO2, MeOH)]. Concentrated HCl (3 drops)
was then added and the mixture was further stirred at room temp.
overnight. The heterogeneous mixture was again hydrogenated at
4 bar for 3 days. After filtration through celite, the filtrate was neu-
tralized with Amberlite IRA 401 (wet, OH– form). After filtration
and evaporation, the residue containing the HCl salt was dissolved
in methanol (5 mL), and ammonia (6 drops) was added. The mix-
ture was stirred for 30 min, concentrated, and purified by prepara-
tive TLC (SiO2, methanol/ammonia 98:2) to give the hyacinthac-
ine A2 (4 mg, 39%) as a yellow oil. RF = 0.14 (SiO2, methanol).
[α]2D0 = +11.2 (c = 0.52, H2O). 1H NMR (500 MHz, CDCl3): δ =
1.49–1.61 (m, 2 H, 6, 7-H), 1.62–1.69 (m, 1 H, 6-H), 1.69–1.75 (m,
1 H, 7-H), 2.46–2.49 (m, 1 H, 3-H), 2.49–2.57 and 2.64–2.42 (m, 1
H, 5-H), 2.90–2.96 (m, 1 H, 7a-H), 3.40–3.47 (dd, J = 11.0 and
6.8 Hz, 1 H, 8-H), 3.62 (br.t, J = 8.0 Hz, 1 H, 1-H), 3.54–3.61 (m,
2 H, 2, 8-H) ppm. 13C NMR (125 MHz, D2O): δ = 25.2 (C-6), 30.5
(C-7), 55.6 (C-5), 63.8 (C-8), 66.7 (C-7a), 69.9 (C-3), 78.0 (C-2),
[16] S. Imhof, S. Randl, S. Blechert, Chem. Commun. 2001, 1692–
1693.
[17] S. Randl, S. Gessler, H. Wakamatsu, S. Blechert, Synlett 2001,
3, 430–432.
[18] a) A. Furstner, O. R. Thiel, C. W. Lehmann, Organometallics
2002, 21, 331–335; b) T. Choi, A. Chatterjee, R. H. Grubbs,
Angew. Chem. Int. Ed. 2001, 113, 1317–1319.
[19] P. Dupau, R. Epple, A. A. Thomas, V. V. Fokin, K. B.
Sharpless, Adv. Synth. Catal. 2002, 344, 421–433.
[20] P. Walsh, K. B. Sharpless, Synlett 1993, 605–606.
[21] B. M. Trost, J. D. Chisholm, S. T. Wrobleski, M. Jung, J. Am.
Chem. Soc. 2002, 124, 12420–12421.
[22] H. Ishiyama, T. Takemura, M. Tsuda, J. Kobayashi, J. Chem.
Soc., Perkin Trans. 1 1999, 1163–1166.
[23] Y. Takaoka, T. Kajimoto, C. H. Wong, J. Org. Chem. 1993, 58,
4809–4812.
[24] T. Itaya, S. Shimizu, S. Nakagawa, M. Morisue, Chem. Pharm.
Bull. 1994, 42, 1927–1930.
[25] B. M. Trost, R. C. Bunt, R. C. Lemoine, C. L. Calkins, J. Am.
Chem. Soc. 2000, 122, 5968–5976.
Received: November 23, 2005
Published Online: February 21, 2006
80.9 (C-1) ppm. IR (ATR): ν = 3313, 2922, 2868, 1115, 1040 cm–1.
˜
MS (FAB): m/z (%) = 174 [M + H]+ (100%).
[1] Recent review: S. G. Pyne, M. Tang, Curr. Org. Chem. 2005, 9,
1393–1418.
1856
www.eurjoc.org
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2006, 1852–1856