C O M M U N I C A T I O N S
Table 3. Synthesis of Functionalized Arylglycines
Scheme 2. Peptide Coupling of N-Sulfinyl-Protected Arylglycines
yield
(%)a
entry
R1
product
drb
1
2
3
4
5
6
7
8
9
4-methoxyphenylc
para-tolyl
5a
5b
5c
5d
5e
5f
5g
5h
5i
89
90
61
79
87
82
74
69
0
99:1
98:2
99:1
99:1
99:1
99:1
98.5:1.5
99:1
ortho-tolyl
Phc
3-acetylphenyl
4-chlorophenylc
4-trifluoromethylphenyl
3-(NO2)-phenyl
3-pyridinyl
arylglycine products are also versatile synthetic intermediates for
further transformations, including selective protecting group re-
moval, conversion to â-amino alcohols and direct incorporation into
peptides, with each transformation proceeding in good yields with
minimal to no racemization.
a Isolated yields after column chromatography. b See Supporting Informa-
tion for diastereoselectivity determination. c Absolute configuration was
determined by comparing the optical rotation of the corresponding free
amino ester to those reported in the literature (see Supporting Information).
Acknowledgment. This work was supported by the NSF (CHE-
0446173).
Scheme 1. Selective Functional Group Transformationsa
Supporting Information Available: Experimental procedures and
characterization data. This material is available free of charge via the
References
(1) Van Bambeke, F.; Van Laethem, Y.; Courvalin, P.; Tulkens, P. M. Drugs
2004, 64, 913.
(2) Wiseman, L. R.; Benfield, P. Drugs 1993, 45, 295.
(3) Jarvis, B.; Simpson, K. Drugs 2000, 60, 347.
(4) For leading references on asymmetric arylglycine syntheses, see: (a)
Shirakawa, S.; Berger, R.; Leighton, J. L. J. Am. Chem. Soc. 2005, 127,
2858. (b) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem., Int.
Ed. 2000, 39, 1279. (c) Krueger, C. A.; Kuntz, K. W.; Dzierba, C. D.;
Wirschun, W. G.; Gleason, J. D.; Snapper, M. L.; Hoveyda, A. H. J. Am.
Chem. Soc. 1999, 121, 4284. (d) Saaby, S.; Fang, X.; Gathergood, N.;
Jorgensen, K. A. Angew. Chem., Int. Ed. 2000, 39, 4114. (e) For a review
on asymmetric arylglycine syntheses, see: Williams, R. M.; Hendrix, J.
A. Chem. ReV. 1992, 92, 889.
(5) Petasis, N. A.; Zavialov, I. A. J. Am. Chem. Soc. 1997, 119, 445.
(6) Poor selectivity has been reported. (a) N-R-methylbenzyl imines: Petasis,
N. A.; Goodman, A.; Zavialov, I. A. Tetrahedron 1997, 53, 16463. (b)
N-sulfinyl imines: Naskar, D.; Roy, A.; Seibel, W. L.; Portlock, D. E.
Tetrahedron Lett. 2003, 44, 8865.
a See Supporting Information for determination of enantiomeric and
diastereomeric purity.
(7) (a) Ueda, M.; Saito, A.; Miyaura, N. Synlett 2000, 1637. (b) Kuriyama,
M.; Soeta, T.; Hao, X.; Chen, Q.; Tomioka, K. J. Am. Chem. Soc. 2004,
126, 8128. (c) Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.;
Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584. (d)
Otomaru, Y.; Tokunaga, N.; Shintani, R.; Hayashi, T. Org. Lett. 2005, 7,
307.
can be accomplished in high yields with no loss in stereochemical
purity (Scheme 1). In addition, straightforward conversion of amino
esters 5 to â-amino alcohols can be achieved using NaBH4.
The applicability of the N-sulfinyl-R-amino acids as protected
amino acid derivatives in peptide synthesis was also demonstrated
for the first time.12 Using coupling conditions developed by
Carpino,13 N-sulfinyl amino acid 7 was successfully coupled to both
the R- and S-leucine methyl ester in good yields (Scheme 2).
Moreover, despite the acidity of the R-proton in arylglycines, little
to no epimerization was observed for either coupling reaction as
determined by HPLC analysis of the diastereomeric products 11
and 12 prepared by oxidation of the sulfinyl group in coupling
products 9 and 10.14
(8) Weix, D. J.; Shi, Y.; Ellman, J. A. J. Am. Chem. Soc. 2005, 127, 1092.
(9) Bolshan, Y.; Batey, R. A. Org. Lett. 2005, 7, 1481.
(10) For leading references on nice applications of N-sulfonyl imino esters,
see: (a) France, S.; Shah, M. H.; Weatherwax, A.; Wack, H.; Roth, J. P.;
Lectka, T. J. Am. Chem. Soc. 2005, 127, 1206. (b) Kjaersgaard, A.;
Jorgensen, K. A. Org. Biomol. Chem. 2005, 3, 804. (c) Kobayashi, S.;
Matsubara, R.; Nakamura, Y.; Kitagawa, H.; Sugiura, M. J. Am. Chem.
Soc. 2003, 125, 2507.
(11) (a) Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J.
Org. Chem. 1999, 64, 1278. (b) Davis, F. A.; McCoull, W. J. Org. Chem.
1999, 64, 3396. (c) Jayathilaka, L. P.; Deb, M.; Standaert, R. F. Org.
Lett. 2004, 6, 3659.
(12) N-Sulfinyl â-amino acids have been employed in peptide coupling
reactions, but racemization is not possible for these systems. Tang, T. P.;
Ellman, J. A. J. Org. Chem. 2002, 67, 7819.
(13) Carpino, L. A. J. Am. Chem. Soc. 1993, 115, 4397-4398.
(14) Deprotection of the sulfinyl group from 9 with methanolic HCl proceeded
in 93% yield (see Supporting Information).
In summary, an efficient and highly diastereoselective synthesis
of arylglycines has been developed that allows incorporation of
electronically and sterically diverse arylboronic acids. The N-sulfinyl
JA060529H
9
J. AM. CHEM. SOC. VOL. 128, NO. 19, 2006 6305