Organometallics 2006, 25, 2725-2728
2725
Terminal Titanium(IV) (Trimethylsilyl)imides Prepared by
Oxidatively Induced Trimethylsilyl Abstraction
Brad C. Bailey, Falguni Basuli, John C. Huffman, and Daniel J. Mindiola*
Department of Chemistry and Molecular Structure Center, Indiana UniVersity,
Bloomington, Indiana 47405
ReceiVed February 21, 2006
Summary: Titanium (trimethylsilyl)imide triflate complexes of
the type (L)TidNSiMe3(OTf) (L- ) [ArNC(CH3)]2CH, Ar )
2,6-iPr2C6H3; L- ) N[2-P(CHMe2)2-4-MeC6H3]2) can be
readily prepared by one-electron oxidation and subsequent
trimethylsilyl abstraction in the Ti(III) precursors (L)TiCl-
(N{SiMe3}2).
and tris-chelate ligands such as [ArNC(CH3)]2CH (Ar ) 2,6-
iPr2C6H3)10 and PNP- (N[2-P(CHMe2)2-4-MeC6H3]2).11
Previously, our group reported that one-electron oxidation
of titanium(III) bis-neopentyl- or bis-anilide (NHAr) promoted
R-hydrogen abstraction to afford terminal titanium alkylidene12
or arylimide13 complexes concurrent with alkane or aniline
formation. Realizing that alkane and aniline are both byproducts
generated in these types of reactions, we speculated whether
other groups could be also eliminated in one-electron-oxidation
processes. For this reason, we turned our attention to the hexa-
methyldisilazide group, since one would expect trimethylsilyl-X
(X- ) halide, pseudohalide) elimination to be a thermodynami-
cally favored process.
Early-transition-metal complexes containing the silylimide
functionality [NSiR3]2- are well-known.1 In the context of group
4 transition metals, the silylimide is typically prepared by
R-hydrogen abstraction,2 silyl chloride elimination,3,4 and, more
recently, transimination reactions.5 Other synthetic strategies to
generate the TidNSiR3 motif include oxidation reactions of low-
6,7
valent metal species with N3SiR3 or silyl-substituted benza-
midinates.8 In certain cases, polynuclear precursors such as
Accordingly, when a toluene solution of ([ArNC(CH3)]2CH)-
3
TiCl2(THF)12a or (PNP)TiCl2 is treated with an equimolar
12d
[Ti(NSiMe3)Cl2]8 can be converted to the corresponding
monomer via salt elimination reactions with sterically imposing
ligands.9 Despite the silylimide ligand being a common theme
in transition metals,1 few examples of the terminal (trimethyl-
silyl)imide group exist for group 4 metals.4,6,7,9 In this paper
we report a systematic approach to the terminal (trimethylsilyl)-
imide functionality on titanium(IV). The process involves a
synthetic strategy combining a one-electron oxidation coupled
with a trimethylsilyl abstraction step. Preparation of the silylim-
ide product is quantitative by NMR spectroscopy and may be
obtained in a highly pure form upon recrystallization. Most
notably, this technique is versatile and can encompass both bis-
amount of NaN{SiMe3}2, the complex ([ArNC(CH3)]2CH)TiCl-
(N{SiMe3}2) (1) or (PNP)TiCl(N{SiMe3}2) (2) is obtained in
good to moderate yields (1, 85%; 2, 64%) (Scheme 1).14
Solution magnetic moment measurements of 1 and 2 are
consistent with a d1 paramagnetic species (Evans method). The
molecular structure of 1 displays a four-coordinate Ti(III)
complex in a highly distorted tetrahedral environment.14 Salient
features for the molecular structure of 1 include a titanium-
amide distance of 1.961(2) Å with the silylamide N being
essentially planar. To avoid clashes with the â-diketiminate aryl
groups, one trimethylsilyl substituent is oriented away from the
isopropyl aryl groups and NCCCNTi framework. This feature
places one of the SiMe3 amide groups in close proximity to the
chloride ligand (∼3.76 Å, Figure 1). The orientation of such a
group implies that trimethylsilyl chloride elimination could be,
in principle, a viable reaction. On the other hand, the molecular
structure of 2 confirms a monomeric, five-coordinate bis-
(trimethylsilyl)amide titanium complex supported by the pincer
ligand PNP (Figure 1). Analogous to the molecular structure
of complex 1, one of the bis(trimethylsilyl)amide silyl groups
in 2 is oriented syn to the chloride ligand, but the distance is
significantly longer (∼4.12 Å, Figure 1).14
* To whom correspondence should be addressed. E-mail: mindiola@
indiana.edu.
(1) Wigley, D. E. Prog. Inorg. Chem. 1994, 42, 239-482.
(2) (a) Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. 1997, 119,
10696-10719. (b) Schaller, C. P.; Cummins, C. C.; Wolczanski, P. T. J.
Am. Chem. Soc. 1996, 118, 591-611. (c) Cummins, C. C.; Schaller, C. P.;
Van Duyne, G. D.; Wolczanski, P. T.; Chan, E. A.-W.; Hoffmann, R. J.
Am. Chem. Soc. 1991, 113, 2985-2994. (d) Bennett, J. L.; Wolczanski, P.
T. J. Am. Chem. Soc. 1994, 116, 2179-2180.
(3) Titanium complexes with bridging (trimethylsilyl)imides have been
reported: (a) Alcock, N. W.; Pierce-Butler, M.; Willey, G. R. J. Chem.
Soc., Dalton Trans. 1976, 707-713. (b) Wollert, R.; Wocadlo, S.; Dehnicke,
K.; Goesmann, H.; Fenske, D. Z. Naturforsch. 1992, 47b, 1386-1392. (c)
Schlichenmaier, R.; Stra¨hle, J. Z. Anorg. Allg. Chem. 1993, 619, 1526-
1529. (d) Alcock, N. W.; Pierce-Bulter, M.; Willey, G. R. J. Chem. Soc.,
Chem. Commun. 1974, 627. (e) Vasisht, S. K.; Sharma, R.; Goyal, V. Indian
J. Chem. 1985, 24A, 37-39.
(4) (a) Putzer, M. A.; Neumuller, B.; Dehnicke, K. Z. Anorg. Allg. Chem.
1998, 624, 57-64. (b) Bu¨rger, H.; Wannagat, U. Monatsh. Chem. 1963,
94, 761.
(5) Li, Y.; Banerjee, S.; Odom, A. L. Organometallics 2005, 24, 3272-
3278.
(6) Gray, S. D.; Thorman, J. L.; Berreau, L. M.; Woo, L. K. Inorg. Chem.
1997, 36, 278-283.
(7) Hanna, T. E.; Keresztes, I.; Lobkovsky, E.; Bernskoetter, W. H.;
Chirik, P. J. Organometallics 2004, 23, 3448-3458.
(8) (a) Hagadorn, J. R.; Arnold, J. J. Am. Chem. Soc. 1996, 118, 893-
894. (b) Hagadorn, J. R.; Arnold, J. Organometallics 1998, 17, 1355-
1368.
(10) Stender, M.; Wright, R. J.; Eichler, B. E.; Prust, J.; Olmstead, M.
M.; Roesky, H. W.; Power, P. P. Dalton Trans. 2001, 3465-3469 and
references therein.
(11) (a) Ozerov, O. V.; Guo, C.; Papkov, V. A.; Foxman, B. M. J. Am.
Chem. Soc. 2004, 126, 4778-4787. (b) Fan, L.; Foxman, B. M.; Ozerov,
O. V. Organometallics 2004, 23, 326-328.
(12) (a) Basuli, F.; Bailey, B. C.; Tomaszewski, J.; Huffman, J. C.;
Mindiola, D. J. J. Am. Chem. Soc. 2003, 125, 6052-6053. (b) Basuli, F.;
Bailey, B. C.; Watson, L. A.; Tomaszewski, J.; Huffman, J. C.; Mindiola,
D. J. Organometallics 2005, 24, 1886-1906. (c) Basuli, F.; Bailey, B. C.;
Huffman, J. C.; Mindiola, D. J. Organometallics 2005, 24, 3321-3334.
(d) Bailey, B. C.; Huffman, J. C.; Mindiola, D. J.; Weng, W.; Ozerov, O.
V. Organometallics 2005, 24, 1390-1393.
(13) Basuli, F.; Bailey, B. C.; Huffman, J. C.; Mindiola, D. J. Chem.
Commun. 2003, 1554-1555.
(14) See the Supporting Information.
(9) Gardner, J. D.; Robson, D. A.; Rees, L. H.; Muntford, P. Inorg. Chem.
2001, 40, 820-824.
10.1021/om060168e CCC: $33.50 © 2006 American Chemical Society
Publication on Web 04/22/2006