5236
N. Panday et al. / Bioorg. Med. Chem. Lett. 16 (2006) 5231–5237
Table 4. Effects on plasma HDL-C and triglyceride levels and liver triglyceride content in male C57Bl6J mice after 5 days treatment
Compound
Dose (mg/kg/day)
HDL-C
Plasma TG
Liver TG
Plasma exposure (ng/ml)
Liver exposure (ng/g)
9
20
33
100
10
+23%*
+35%*
+12%
+7%
ꢀ12%
ꢀ11%
+28%
+70%
+520%*
3400
700
13000
8200
6300
100
2300
Values are expressed as % change versus vehicle-treated group; *p > 0.05; Anova followed by Student’s t-test.
3. (a) Krasuski, R. A. Curr. Opin. Lipidol. 2005, 16, 652; (b)
Brousseau, M. E. Drug Discovery Today 2005, 10, 1095.
4. Terasaka, N.; Hiroshima, A.; Koieyama, T.; Ubukata, N.;
Morikawa, Y.;Nakai, D.;Inaba, T. FEBSLett. 2003, 536, 6.
5. (a) Grefhorst, A.; Elzinga, B. M.; Voshol, P. J.; Plosch, T.;
Kok, T.; Bloks, V. W.; van der Sluijs, F. H.; Havekes, L.
M.; Romijn, J. A.; Verkade, H. J.; Kuipers, F. J. Biol.
Chem. 2002, 277, 34182; (b) Schultz, J. R.; Tu, H.; Luk, A.;
Repa, J. J.; Medina, J. C.; Li, L.; Schendner, S.; Wang, S.;
Thoolen, M.; Mangelsdorf, D. J.; Lustig, K. D.; Shan, B.
Gene Dev. 2000, 14, 2831; (c) Miao, B.; Zondlo, S.; Gibbs,
S.; Cromley, D.; Hosagrahara, V. P.; Kirchgessner, T. G.;
Billheimer, J.; Mukherjee, R. J. Lipid Res. 2004, 45, 1410.
6. Cao, G.; Liang, Yu; Xian-Cheng, J.; Eacho, P. L. Drug
News Perspect. 2004, 17, 35.
50-fold higher and liver levels between 30- and 150-fold
higher than the EC50 in transcriptional transactivation
assays. These compounds show significant binding to
plasma proteins suggesting that the free fraction avail-
able for receptor activation may be somewhat lower.
The contrast in the relative effects on HDL-C-raising
versus the undesired induction of liver triglyceride syn-
thesis for these compounds is striking, however it is cur-
rently unclear if this is due to differential activation of
LXRa versus LXRb or to gene-specific or tissue-specific
regulatory functions. Further studies will be required to
fully dissect these mechanisms.
In summary, the design of new LXR ligands, suggested
partly by the published T091317/LXRb-cocrystal struc-
ture, has led to the identification of unbranched and
branched anilines with markedly improved affinity and
activity compared to the sulfonamide T0901317. The
modifications that led to improved potency were the
introduction of suitable functional groups into the P2
and/or P3 pockets as well as proper orientation of the
N-substituents. This was accomplished by either intro-
duction of a chloro substituent ortho to the anilino
nitrogen or by quaternizing the carbon atom that re-
placed the corresponding SO2 group of T0901317. The
identification of representative compounds that raised
HDL-C with different effects on activation of liver tri-
glyceride synthesis in mice, and of compounds with
selectivity for LXRb versus LXRa, suggests that this
class may hold promise to find LXR modulators with
reduced side effects.
7. Li, L.; Liu, J.; Zhu, L.; Cutler, S.; Hasegawa, H.; Shan, B.;
Medina, J. C. Bioorg. Med. Chem. Lett. 2006, 16, 1638,
and references cited therein.
8. Jiang, X.-C.; Beyer, T. P.; Li, Z.; Liu, J.; Quan, W.;
Schmidt, R. J.; Zhang, Y.; Bensch, W. R.; Eacho, P. L.;
Cao, G. J. Biol. Chem. 2003, 278, 49072.
9. Hoerer, S.; Schmid, A.; Heckel, A.; Budzinski, R.-M.;
Nar, H. J. Mol. Biol. 2003, 334, 853.
10. Protein structure analysis and molecular modeling were
performed with the program Moloc Gerber, P. R.;
Mueller, K. J. Comput. Aided Mol. Des. 1995, 9, 251.
11. Related branched and unbranched anilinohexafluoroiso-
propanols as LXR receptor modulators have also been
claimed by Van Camp, J.; Malecha, J.; Miyashiro, J. M.;
Decrescenzo, G. A.; Collins, J. T.; Kalman, M. J. Int.
Patent Appl. WO2003099769, 2003.
12. Details on the synthetic methodologies can in part be
found in Int. Patent Appl. WO200600323, 2006.
13. The phenyloxazolylmethylchlorides used to synthesize
derivatives 17–22 were prepared according to a procedure
described by Binggeli, A.; Bo¨hringer, M.; Grether, U.;
Hilpert, H.; Maerki, H.-P.; Meyer, M.; Mohr, P.; Ricklin,
F. Int. Patent Appl. WO200292084, 2002 (example 21,
steps a and b).
14. Vogel, Ch.; Jeschke, U.; Kramer, S.; Ott, A. J. Liebigs
Ann. Chem. 1997, 4, 737.
15. Chini, M.; Crotti, P.; Macchia, F. J. Org. Chem. 1991, 56,
5939.
16. Binding (IC50) was determined in a radioligand displace-
ment assay and transactivation (EC50) by means of a
cellular luciferase transcriptional reporter assay. The
details of the two assays can be found in Int. Patent
Appl. WO2006000323, 2006. The value ‘%-effect’ given in
brackets in addition to the EC50 indicates the maximally
achievable transactivation as compared to the reference
compound T0901317 which is set at 100%.
Acknowledgments
The authors thank A. Araujo del Rosario, A. van der
´
Klooster, B. Wolf, and K. Guitre for performing bind-
ing and transactivation assays, H. Isel for the formula-
tions, H. Meyer, S. Weiss, and T. Traendlin for
performing the in vivo studies, M. Mangold for the Hit-
achi measurements, S. Masur and I. Walter for LC–MS
measurements, and L. Forzy and P. Dietiker for sup-
porting the synthesis of several compounds.
References and notes
1. (a) Geyeregger, R.; Zeyda, M.; Stulnig, T. M. Cell. Mol.
Life Sci. 2006, 63, 524; (b) Collins, Jon L. Curr. Opin.
Drug Discov. Dev. 2004, 7, 692.
2. (a) Wang, N.; Ranalletta, M.; Matsuura, F.; Peng, F.;
Tall, A. R. Arterioscler. Thromb. Vasc. Biol. 2006, 26,
1310; (b) Crestani, M.; De Fabiani, E.; Caruso, D.; Mitro,
N.; Gilardi, F.; Vigil Chacon, A. B.; Patelli, R.; Godio, C.;
Galli, G. Biochem. Soc. Trans. 2004, 32, 92.
17. The rather modest EC50-values of esters 52–54 could be
the result of their partial hydrolysis to the acids 55–57
under the conditions of the cellular transactivation assay
(probably esterase promoted). Other esters (e.g., 33 and
47) seem to be less readily hydrolyzed.
18. Houck, K. A.; Borchert, K. M.; Hepler, C. D.; Thomas, J.
S.; Bramlett, K. S.; Michael, L. F.; Burris, T. P. Mol.
Genet. Metab. 2004, 83, 184.