Chemical Science
Edge Article
18 E. de Smit and B. M. Weckhuysen, Chem. Soc. Rev., 2008, 37, 42 T. Yan, B. L. Feringa and K. Barta, Nat. Commun., 2014, 5,
2758–2781. 5602.
19 L. Filipponi and D. Sutherland, Nanotechnologies: Principles, 43 J. Maes, T. R. M. Rauws and B. U. W. Maes, Chem.–Eur. J.,
applications, implications and hands-on activities, European
Commission, European Union, 2012.
2013, 19, 9137–9141.
44 D. B. Bagal and B. M. Bhanage, Adv. Synth. Catal., 2015, 357,
20 V. Polshettiwar and T. Asefa, Nanocatalysis: Synthesis and
Applications, Wiley, 2013.
883–900.
45 S. Werkmeister, K. Junge and M. Beller, Org. Process Res.
21 P. Serp and K. Philippot, Nanomaterials in Catalysis, Wiley,
2012.
Dev., 2014, 18, 289–302.
46 C. de Bellefon and P. Fouilloux, Catal. Rev., 1994, 36, 459–
22 M. Sankar, N. Dimitratos, P. J. Miedziak, P. P. Wells,
506.
C. J. Kiely and G. J. Hutchings, Chem. Soc. Rev., 2012, 41, 47 H.-U. Blaser, H. Steiner and M. Studer, Chem. Cat. Chem.,
8099–8139. 2009, 1, 210–221.
23 J. Zecevic, G. Vanbutsele, K. P. de Jong and J. A. Martens, 48 M. Orlandi, D. Brenna, R. Harms, S. Jost and M. Benaglia,
Nature, 2015, 528, 245–248. Org. Process Res. Dev., 2018, 22, 430–445.
24 P. Munnik, P. E. de Jongh and K. P. de Jong, Chem. Rev., 49 A. Corma and P. Serna, Science, 2006, 313, 332–334.
ˇ
´
2015, 115, 6687–6718.
25 E. M. van Schrojenstein Lantman, T. Deckert-Gaudig,
50 T. Schwob and R. Kempe, Angew.Chem. Int .Ed., 2016, 55,
15175–15179.
A. J. G. Mank, V. Deckert and B. M. Weckhuysen, Nat. 51 D. Formenti, F. Ferretti, C. Topf, A.-E. Surkus, M.-M. Pohl,
Nanotechnol., 2012, 7, 583–586.
26 L. He, F. Weniger, H. Neumann and M. Beller, Angew. Chem.
Int. Ed., 2016, 55, 12582–12594.
27 H. Furukawa, K. E. Cordova, M. O'Keeffe and O. M. Yaghi,
Science, 2013, 341, 1230444.
J. Radnik, M. Schneider, K. Junge and M. Beller, J. Catal.,
2017, 351, 79–89.
52 B. Sahoo, D. Formenti, C. Topf, S. Bachmann, M. Scalone,
K. Junge and M. Beller, ChemSusChem, 2017, 10, 3035–3039.
53 P. Zhou, L. Jiang, F. Wang, K. Deng, K. Lv and Z. Zhang, Sci.
Adv., 2017, 3, e1601945.
´
´
28 A. Corma, H. Garcıa and F. X. Llabres i Xamena, Chem. Rev.,
2010, 110, 4606–4655.
54 W. Huber, J. Am. Chem. Soc., 1944, 66, 876–879.
29 H. Wang, Q.-L. Zhu, R. Zou and Q. Xu, Chem, 2017, 2, 52–80. 55 R. Novi, Hydrogenation of aliphatic nitriles over nickel catalysts
¨
30 L. Zhu, X.-Q. Liu, H.-J. Jiang and L.-B. Sun, Chem. Rev., 2017,
117, 8129–8176.
modied by formaldehyde, PhD thesis, ETH Zurich,
Switzerland, 2004, DOI: 10.3929/ethz-a-004877494.
31 P. Pachfule, D. Shinde, M. Majumder and Q. Xu, Nat. Chem., 56 P. Kukula, M. Studer and H.-U. Blaser, Adv. Synth. Catal.,
2016, 8, 718–724.
2004, 346, 1487–1493.
32 J. Tang and Y. Yamauchi, Nat. Chem., 2016, 8, 638–639.
57 R. J. Allain and G. D. Smith, US Pat., 4375003A, 1983.
33 W. Xia, A. Mahmood, R. Zou and Q. Xu, Energy Environ. Sci., 58 C. Bornschein, S. Werkmeister, B. Wendt, H. Jiao,
2015, 8, 1837–1866.
E. Alberico, W. Baumann, H. Junge, K. Junge and
34 (a) K. Shen, X. Chen, J. Chen and Y. Li, ACS Catal., 2016, 6,
M. Beller, Nat. Commun., 2014, 5, 4111.
5887–5903; (b) X. Wang and Y. Li, J. Mol. Catal. A: Chem., 59 S. Chakraborty, G. Leitus and D. Milstein, Chem. Comm.,
2016, 420, 56–65; (c) J. Long, K. Shen and Y. Li, ACS Catal.,
2017, 7, 275–284.
35 R. V. Jagadeesh, K. Murugesan, A. S. Alshammari,
2016, 52, 1812–1815.
60 S. Mukherjee, D. Srimani, S. Chakraborty, Y. Ben-David and
D. Milstein, J. Am. Chem. Soc., 2015, 137, 8888–8891.
H. Neumann, M.-M. Pohl, J. Radnik and M. Beller, Science, 61 P. Ji, K. Manna, Z. Lin, X. Feng, A. Urban, Y. Song and W. Lin,
2017, 358, 326–332. J. Am. Chem. Soc., 2017, 139, 7004–7011.
36 The applied linker, terephthalic acid (TPA) belongs to the 62 F. Chen, C. Topf, J. Radnik, C. Kreyenschulte, H. Lund,
most available carboxylic acids; see for example:
H. Schneider, A.-E. Surkus, L. He, K. Junge and M. Beller,
R. J. Sheehan, Terephthalic Acid, Dimethyl Terephthalate,
J. Am. Chem. Soc., 2016, 138, 8781–8788.
and Isophthalic Acid, Ullmann's Encyclopedia of Industrial 63 W. A. Butte and W. J. Murtaugh, US Pat., 4186146A, 1980.
Chemistry, Wiley-VCH, Weinheim, 2011.
37 S. A. Lawrence, Amines: synthesis, properties and applications,
Cambridge University Press, 2004.
38 A. Ricci, Amino group chemistry: from synthesis to the life
sciences, Wiley-VCH, 2008.
64 K. Tokmic, B. J. Jackson, A. Salazar, T. J. Woods and
A. R. Fout, J. Am. Chem. Soc., 2017, 139, 13554–13561.
65 S. Elangovan, C. Topf, S. Fischer, H. Jiao, A. Spannenberg,
W. Baumann, R. Ludwig, K. Junge and M. Beller, J. Am.
Chem. Soc., 2016, 138, 8809–8814.
arizona.edu/les/Top200PharmaceuticalProductsRetail
Sales2015LowRes.pdf.
66 J. G. McAlpin, Y. Surendranath, M. Dincǎ, T. A. Stich,
S. A. Stoian, W. H. Casey, D. G. Nocera and R. D. Britt, J.
Am. Chem. Soc., 2010, 132, 6882–6883.
40 S. D. Roughley and A. M. Jordan, J. Med. Chem., 2011, 54, 67 N. S. McIntyre, D. D. Johnston, L. L. Coatsworth, R. D. Davidson
3451–3479. and J. R. Brown, Surf. Interface Anal., 1990, 15, 265–27268.
41 J. Li, J. S. Cisar, C. Zhou, B. Vera, H. Williams, 68 S. C. Petitto and M. A. Langell, J. Vac. Sci. Technol., A, 2004,
´
A. D. Rodrıguez, B. F. Cravatt and D. Romo, Nat. Chem.,
22, 1690.
2013, 5, 510–517.
69 L. Armelao, Surf. Sci. Spect., 2001, 8, 14.
Chem. Sci.
This journal is © The Royal Society of Chemistry 2018