Chemistry Letters Vol.35, No.4 (2006)
377
2
3
For recent reviews on enyne metathesis, see: M. Mori, Top. Orga-
nomet. Chem. 1998, 1, 133; C. S. Poulsen, R. Madsen, Synthesis
2003, 1; S. T. Diver, A. J. Giessert, Chem. Rev. 2004, 104, 1317.
M. Mori, T. Kitamura, N. Sakakibara, Y. Sato, Org. Lett. 2000, 2,
543; Y.-K. Yang, J. Tae, Synlett 2003, 2017; S. Kotha, S. Halder,
E. Brahmachary, T. Ganesh, Synlett 2000, 853; J. Renaud, C.-D.
Graph, L. Oberer, Angew. Chem., Int. Ed. 2000, 39, 3101; M.
Moreno-Manas, R. Pleixats, A. Santamaria, Synlett 2001, 1784;
N. Saito, Y. Sato, M. Mori, Org. Lett. 2002, 4, 803.
A. Murakami, G. Gao, M. Omura, M. Yano, C. Ito, H. Furukawa,
D. Takahasi, K. Koshimizu, H. Ohigashi, Bioorg. Med. Chem.
Lett. 2000, 10, 59; J. Wu, Y. Liao, Z. Yang, J. Org. Chem.
2001, 66, 3642.
T. Nemeto, T. Oshima, M. Shibasaki, Tetrahedron Lett. 2000, 41,
9569; C. Jia, D. Piao, T. Kitamura, Y. Fujiwara, J. Org. Chem.
2000, 65, 7516; R. V. Rozhkov, R. C. Larock, Org. Lett. 2003,
5, 797; J. C. Gonzalez-Gomez, E. Uriarte, Synlett 2003, 2225;
S.-L. Zhang, Z.-S. Huang, L.-K. An, X.-Z. Bu, L. Ma, Y.-M. Li,
A. S. C. Chan, L.-Q. Gu, Org. Lett. 2004, 6, 4853; E. Sekino, T.
Kumamoto, T. Tanaka, T. Ikeda, T. Ishikawa, J. Org. Chem.
2004, 69, 2760.
S. K. Chattopadhyay, S. Maity, S. Panja, Tetrahedron Lett. 2002,
43, 7781; S. K. Chattopadhyay, B. K. Pal, S. Maity, Chem. Lett.
2003, 32, 1190; S. K. Chattopadhyay, R. De, S. Biswas, Synthesis
2005, 403; S. K. Chattopadhyay, K. Sarkar, S. Karmakar, Synlett
2005, 2083.
naphtho-
O
O
O
O
O
O
O
quinone
O
O
X
5
H
H
benzene
reflux,
36 h
benzene
reflux,
30 h
H
O
H
X
H
H
O
O
16, 83%
14, X = NPh, 66%
15, X = O, 69%
O
O
H
X
4
5
O
H
O
H
H
H
H
''
''
9
12 h
12 h
O
O
O
O
O
O
17, X = NPh, 72%
18, X = O, 76%
19, 77%
O
O
H
Ph
O
H
N
H
H
O
H
O
H
naphtho-
quinone
N
O
Ph
O
O
13
benzene
reflux,
36 h
benzene
reflux,
30 h
O
O
O
O
20, 41%
21, 36%
6
Scheme 2.
O
O
7
8
9
V. Satyanarayana, C. P. Rao, G. L. D. Krupadanam, G.
Srimannarayana, Synth. Commun. 1991, 21, 661.
K. Tonogaki, M. Mori, Tetrahedron Lett. 2002, 43, 2235; J. A.
Smulik, S. T. Diver, Org. Lett. 2000, 2, 2271.
O
Et3N
O
16
Silicagel
10h
O
22, 61%
P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996,
118, 100.
10 K. D. Kaufman, J. Org. Chem. 1961, 26, 117.
Et3N
Silicagel
10 h
O
O
19
11 K. R. Shah, K. N. Trivedi, J. Indian Chem. Soc. 1975, 52, 436.
12 M. Mori, N. Sakakibara, A. Kinoshita, J. Org. Chem. 1998, 63,
6082; M. Rosillo, G. Dominguez, L. Casarrubios, U. Amador, J.
Perez-Castles, J. Org. Chem. 2004, 69, 2084; H.-Y. Lee, H. Y.
Kim, H. Tae, B. G. Kim, J. Lee, Org. Lett. 2003, 5, 3439.
13 All new compounds reported gave satisfactory spectroscopic and
analytical data. Data for 17: mp 296–298 ꢁC. ꢀmax: 328 nm. IR
(KBr, cmꢂ1): 1716, 1698, 1610, 1387, 1114. 1H NMR (CDCl3,
500 MHz) ꢁ 7.48–7.45 (2H, m), 7.41–7.38 (1H, m), 7.20–7.17
(3H, m), 6.18 (1H, app. t, J ¼ 3:4 Hz), 6.11 (1H, s), 5.19 (1H, d,
J ¼ 12:6 Hz), 4.52 (1H, d, J ¼ 12:6 Hz), 4.24 (1H, app. t, J ¼
14:8 Hz), 3.43 (1H, dd, J ¼ 8:9, 5.9 Hz), 3.40–3.37 (1H, m),
3.01 (1H, dd, J ¼ 15:0, 2.5 Hz), 2.92 (1H, dd, J ¼ 16:3, 6.8 Hz),
2.78 (1H, brd, J ¼ 12:8 Hz), 2.34 (3H, s), 2.23–2.18 (1H, m),
2.14 (3H, s). 13C NMR (CDCl3, 75 MHz) ꢁ 178.2 (s), 176.6 (s),
161.6 (s), 157.3 (s), 152.3 (s), 151.6 (s), 139.7 (s), 131.6 (s),
129.1 (d), 128.8 (d), 127.1 (d), 126.3 (d), 124.7 (d), 121.7 (s),
115.4 (s), 113.4 (s), 112.1 (d), 70.1 (t), 44.4 (d), 40.2 (d), 38.7
(t), 34.4 (d), 24.8 (t), 18.6 (q), 8.9 (q). Elemental analyses: Found:
C, 73.70; H, 5.46; N, 3.04%. Calcd for C27H23NO5: C, 73.46; H,
5.25; N, 3.17%. m=z (EI, 70 eV): 441 (100%), 268 (63%), 203
(81%). Data for 14: mp 218–220 ꢁC. ꢀmax: 326 nm. IR (KBr,
cmꢂ1): 1707, 1595, 1494, 1389, 1265. 1H NMR (CDCl3, 300
MHz) ꢁ 7.48–7.40 (4H, m), 7.35 (1H, d, J ¼ 8:5 Hz), 7.19 (1H,
d, J ¼ 7:8 Hz), 6.77 (1H, d, J ¼ 8:8 Hz), 6.15 (2H, brs), 5.25
(1H, d, J ¼ 12:5 Hz), 4.44 (1H, d, J ¼ 12:6 Hz), 3.94 (1H, d,
J ¼ 2:7 Hz), 3.91 (1H, s), 3.52 (1H, dd, J ¼ 8:9, 5.6 Hz), 3.38
(1H, t, J ¼ 8:3 Hz), 2.93–2.86 (2H, m), 2.39 (3H, s), 2.33–2.30
(1H, m). 13C NMR (CDCl3, 75 MHz) ꢁ 178.3 (s), 176.5 (s),
161.2 (s), 159.7 (s), 152.9 (s), 152.8 (s), 140.1 (s), 131.7 (s),
129.1 (d), 128.6 (d), 126.9 (d), 126.4 (d), 123.4 (d), 115.9 (s),
114.0 (s), 113.8 (s), 111.6 (d), 70.3 (t), 44.8 (d), 40.3 (d), 38.9
(d), 25.2 (t), 22.9 (t), 18.8 (q). Elemental analyses: Found: C,
73.19; H, 5.12; N, 3.41%. Calcd for C26H21NO5: C, 73.06; H,
4.95; N, 3.28%. m=z (EI, 70 eV): 427 (100%), 307 (22%), 254
(61%).
O
O
O
23, 68%
Scheme 3.
ing possibly to new coumarin–anthraquinone conjugate mole-
cules in view of the known importance of these two ring systems.
Thus, when a solution of the cycloadduct 16 in dichloromethane
was stirred with triethylamine in the presence of silica gel,
smooth oxidative aromatization took place to provide the corre-
sponding anthraquinone derivative 22 (Scheme 3) in good yield.
Similar aromatization/oxidation of the cycloadduct 19 provided
the conjugate molecule 23 in comparable yield.
In short, we have demonstrated that combined Claisen
rearrangement, ring-closing enyne metathesis, and Diels–Alder
reaction is an efficacious strategy for the preparation of several
hitherto unknown linearly and angularly architectured polycy-
clic complex coumarin derivatives. The advantage of the meth-
odology lies in its true atom-economic nature, operational
simplicity, predetermined mode of cyclization and high level
of stereocontroll. The prepared compounds13 may find biological
applications.
Financial assistance from DST, New Delhi (Grant No: SR/
OC-24/2002) is gratefully acknowledged. One of us (T.B.) is
also thankful to CSIR, New Delhi for a fellowship.
References and Notes
1
For recent reviews on olefin metathesis, see: T. M. Trnka, R. H.
Grubbs, Acc. Chem. Res. 2001, 34, 18; A. Furstner, Angew. Chem.,
Int. Ed. 2000, 39, 3012; A. Deiters, S. F. Martin, Chem. Rev. 2004,
104, 2199.