2044
Can. J. Chem. Vol. 83, 2005
Table 5. 13C NMR data for 2–13.
Compound
13C NMR
121.60 : C2, 131.40 : C3, 134.14 : C4, 154.80 : C1, 190.83 : C5
2
3
4
5
6
121.50 : C2, 121.33 : C2 (is), 129.00 : C3, 129.37 : C3 (is), 131.00 : C4, 131.00 : C4 (is), 148.19 : C5, 151.70 : C1
14.46 : C7, 69.81 : C6, 121.57 : C2, 128.62 : C3, 130.46 : C4, 147.35 : C5, 151.63 : C1
151.63 : C1, 147.93 : C5, 134.92 : C7, 130.20 : C4, 128.72 : C3, 121.57 : C2, 117.33 : C8, 75.29 : C6
9.22 : C8, 25.85 : C7, 121.89 : C2, 121.58 : C2 (is), 128.13 : C4, 130.27 : C3, 134.93 : C3 (is), 152.16 : C1, 155.86 :
C5, 172.03 : C6
7
8
9
152.88 : C1, 135.07 : C3, 121.99 : C2, 118.85 : C4, 109.37 : C5
27.04 : C6, 120.96 : C2, 131.20 : C3, 134.54 : C4, 153.27 : C1, 197.00 : C5
11.90 : C6, 120.93 : C2, 127.36 : C3, 134.64 : C4, 150.39 : C1, 152.51 : C5
10
153.08 : C13, 152.48 : C5, 150.53 : C9, 150.27 : C1, 134.60 : C12, 133.72 : C4, 127.58 : C11, 127.33 : C3, 120.93 :
C2, C10, 69.53 : C7, 15.05 : C8, 12.63 : C14, 11.82 : C6
11
12.69 : C6, 74.88 : C7, 74.57 : C7 (is), 117.75 : C9, 117.47 : C9 (is), 120.99 : C2, 120.53 : C2 (is), 127.69 : C3,
133.53 : C4, 134.97 : C8, 150.67 : C1, 153.67 : C5, 152.34 : C5 (is)
12
13
9.29 : C9, 14.19 : C6, 26.12 : C8, 121.16 : C2, 128.94 : C3, 132.25 : C4, 151.68 : C1, 161.91 : C5, 171.88 : C7
163.38 : C7, 162.89 : C5, 152.55 : C14, 151.73 : C1, 150.22 : C10, 134.77 : C4, 133.31 : C13, 132.03 : C9, 129.02 :
C3, 127.43 : C8, 126.94 : C12, 121.16 : C2, 120.96 : C11, 14.35 : C6, 11.82 : C15
Note: For numbering see Scheme 1. Acetone-d (for 3–5), CDCl3-d (for 2), and DMSO-d (for 6–13) were used as solvents in NMR analyses. Isomer (is).
and 9, the azomethine carbon atoms in the substituted moi-
ety of the molecules are shifted to the lower downfield for
compound 6, 11, 12, and 13, except 4, 5, and 10 in which
the alkyl groups release an electron to the molecule. But the
azomethine resonances do not change or change very little
in the nonsubstituted moieties of 10 and 13. In addition, the
13C NMR data clearly show that compound 10 is referred to
as the geminal isomer. There are essentially two different
sets of carbon atoms within the geminal structures, but three
sets within the nongeminal structures for the tetrasubstituted
cyclotriphosphazenes. The resonances of two sets of carbon
atoms were observed in the 13C NMR spectrum of 10. These
results indicate the geminal structure. A triplet and a doublet
are expected in the 31P NMR spectra of geminal structures
for tetrasubstituted cyclotriphosphazene (10), but the main
peak was observed as a singlet. These results show that the
phosphorus signals are not affected from the binding groups
because the substituents at the end of the molecule are far
from the phosphorus atoms.
References
1. H.R. Allcock. Phosphorus–nitrogen compounds. Academic
Press, New York. 1972.
2. C. Diaz, I. Izquierdo, F. Mendizabal, N. Yutronic. Inorg. Chim.
Acta, 294, 20 (1999).
3. A. K2l2ç, S. Begeç, B. Çetinkaya, T. Hökelek, Z. K2l2ç, N.
Gündüz, and M. Y2ld2z. Heteroat. Chem. 7, 249 (1996).
4. G.A. Carriedo, F.J.G. Alonso, P.G. Elipe, E. Brillas, and L.
Julia. Org. Lett. 3, 1625 (2001).
5. H.R. Allcock, C.T. Morrissey, W.K. Way, and N. Winograd.
Chem. Mater. 8, 2730 (1996).
6. H.R. Allcock. In Inorganic and organometallic polymers.
Edited by H.R. Allcock, M. Zeldin, and K.J. Wynne. ACS
Symposium Series 360. 1988. Chap. 19.
7. C.T. Laurencin, H.J. Koh, T.X. Neenan, H.R. Allcock, R.
Langer. J. Biomed. Mater. Res. 21, 1231 (1987).
8. H.R. Allcock, S.R. Pucher, R.J. Fitzpatrick, and K. Rashid.
Biomaterials, 13, 857 (1992).
9. G. Giavaresi, M. Tschon, V. Borsari, J.H. Daly, J.J. Liggat, M.
Fini, V. Bonazzi, A. Nicolini, A. Carpi, M. Morra, C.
Cassinelli, and R. Giardino. Biomedicine and Pharma-
cotherapy, 58, 411 (2004).
Conclusion
10. G. Fantin, M. Fogagnolo, M. Gleria, A. Medici, F. Minto, and
Hexasubstituted compounds were obtained from the reac-
tions of hexakis{4-[(hydroxyimino)methyl]phenoxy}cyclo-
triphosphazene (3) with ethyl bromide, allyl bromide, and
propanoyl chloride; however, the oxime groups on 3 rear-
ranged to nitrile in the reaction of 3 with acriloyl chloride.
Hexasubstituted compounds were also obtained from the
reactions of hexakis{4-[(1)-N-hydroxyethaneimidoyl]phen-
oxy}cyclotriphosphazene (9) with allyl bromide and
propanoyl chloride. The tetrasubstituted product, which is a
geminal isomer, and pentasubstituted products were obtained
from the reactions of 9 with ethyl bromide and acriloyl chlo-
ride, respectively.
P. Pedrini. Tetrahedron, 52, 9535 (1996).
11. K. Brandt, R. Kruszynski, T.J. Bartczak, and I.P. Czomperlik.
Inorg. Chim. Acta, 322, 138 (2001).
12. A.I. Ozturk, O. Y2lmaz, S. K2rbag, and M. Arslan. Cell.
Biochem. Funct. 18, 117 (2000).
13. V. Konar, O.Y2lmaz, A.I. Ozturk, S. K2rbag, and M. Arslan.
Bioorg. Chem. 28, 214 (2000).
14. O. Y2lmaz, F. Aslan, A.I. Ozturk, N. Vanl2, S. K2rbag, and M.
Arslan. Bioorg. Chem. 30, 303 (2002).
15. C.W. Allen. J. Fire Sci. 11, 320 (1993).
16. M. Gleria and R.D. Jaeger. J. Inorg. Organomet. Polym. 11,
1(2001).
17. M.T.R. Laguna, M.P. Tarazona, G.A. Carriedo, F.J.G. Alonso,
J.I. Fidalgo, and E. Saiz. Macromolecules, 35, 7505 (2002).
18. E. Çil, M. Arslan, F. Aslan, and A.I. Ozturk. Phosphorus Sul-
fur Silicon Relat. Elem. 178, 1037 (2003).
Acknowledgement
We thank the Firat University Research Fund for support
(project no. FUBAP 923).
19. A.I. Ozturk, F. Aslan, E. Cil, M. Arslan, and A. K2l2ç. Phos-
phorus Sulfur Silicon Relat. Elem. 178, 2097 (2003).
© 2005 NRC Canada