Indol-3-yl-tetramethylcyclopropyl Ketones
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 6 1911
Glia in Alzheimer’s Disease Brains. J. Neurosci. 2003, 23, 11136–
11141.
(5-(Benzyloxy)-1-(2-morpholinoethyl)-1H-indol-3-yl)(2,2,3,3-
tetramethylcyclopropyl)methanone (37). The (5-benzyloxy-1H-
indol-3-yl)-(2,2,3,3tetramethyl-cyclopropyl)methanone (from the
procedure for 24) (1.1 g, 3.0 mmol), 2-morpholin-4-ylethyl meth-
anesulfonate (5.1 mmol), and NaH (60% dispersion in mineral oil,
0.36 g, 9.1 mmol) in 25 mL of DMF were processed as described
in the procedure for 5 to provide 37 (1.2 g, 2.6 mmol, 86% yield).
1H NMR (300 MHz, CDCl3) δ ppm 1.31 (s, 6 H), 1.36 (s, 6 H),
1.90 (s, 1 H), 2.39–2.59 (m, 4 H), 2.72–2.87 (m, 2 H), 3.63–3.81
(m, 4 H), 4.13–4.31 (m, 2 H), 5.14 (s, 2 H), 7.01 (dd, J ) 9.0, 2.5
Hz, 1 H), 7.22–7.28 (m, 1 H), 7.29–7.44 (m, 3 H), 7.45–7.52 (m,
2 H), 7.75 (s, 1 H), 8.07 (d, J ) 2.4 Hz, 1 H); MS (DCI/NH3) m/z
461 (M + H)+; Anal. (C23H31NO2) C, H, N.
(11) (a) Julien, B.; Grenard, P.; Teixeira-Clerc, F.; van Nhieu, J.; Li, L.;
Karsak, M.; Zimmer, A.; Mallat, A.; Lotersztajn, S. Antifibrogenic
Role of the Cannabinoid Receptor CB2 in the Liver. Gastroenterology
2005, 128, 742–755. (b) Bátkai, S.; Osei-Hyiaman; Pan, H.; el-Assal,
O.; Rajesh, M.; Mukhopadhyoy, P.; Hong, F.; Harvey-White, J.; Jafri,
A.; Haskó, G.; Huffman, J. W.; Gao, B.; Kunos, G.; Pacher, P.
Cannabinoid-2 Receptor Mediates Protection against Hepatic Ischemia/
Reperfusion Injury. FASEB J. 2007, 21, 1788–1800.
(12) Bermudez-Silva, F. J.; Sanches-Vera, I.; Suárez, J.; Serrano, A.;
Fuentes, E.; Juan-Pico, P.; Nadal, A.; de Fonseca, F. R. Role of
Cannabinoid CB2 Receptors in Glucose Homeostasis in Rats. Eur.
J. Pharmacol. 2007, 565, 207–211.
(13) Huffman, J. W.; Padgett, L. W. Recent Development in the Medicinal
Chemistry of Cannabimimetic Indoles, Pyrroles and Indenes. Curr.
Med. Chem. 2005, 12, 1395–1411.
Supporting Information Available: Elemental analysis for all
final compounds, experimental information and data for compounds
6–16, 18–20, 22–24, 26–31, 34, 36, and 38–55 and 1H NMR spectra
for representative compounds. This material is available free of
(14) Bell, M. R.; D’Ambra, T. E.; Kumar, V.; Eissenstat, M. A.; Herrmann,
J. L., Jr.; Wetzel, J. R.; Rosi, D.; Philion, R. E.; Daum, S. J.; Hlasta,
D. J.; Kullnig, R. K.; Ackerman, J. H.; Haubrich, D. R.; Luttinger,
D. A.; Baizman, E. R.; Miller, M. S.; Ward, S. J. Antinociceptive
(Aminoalky1)indole. J. Med. Chem. 1991, 34, 1099–1110.
(15) D’Ambra, T. E.; Estep, K. G.; Bell, M. A.; Eissenstat, M. A.; Josef,
K. A.; Ward, S. J.; Haycock, D. A.; Baizman, E. R.; Casiano, F. M.;
Beglin, N. C.; Chippari, S. M.; Grego, J. D.; Kullnig, R. K.; Daley,
G. T. Conformationally Restrained Analogues of Pravadoline: Nano-
molar Potent, Enantioselective, (Aminoalkyl)indole Agonists of the
Cannabinoid Receptor. J. Med. Chem. 1992, 35, 124–135.
(16) Eissenstat, M. A.; Bell, M. R.; D’Ambra, T. E.; John, A. E.; Daum,
S. J.; Ackerman, J. H.; Gruett, M. D.; Kumar, V.; Estep, K. G.;
Olefirowicz, E. M.; Wetzel, J. R.; Alexander, M. D.; Weaver, J. D.;
Haycock, D. A.; Luttinger, D. A.; Casiano, F. M; Chippari, S. M.;
Kuster, J. E.; Stevenson, J. I.; Ward, S. J. Aminoalkylindoles:
Structure-Activity Relationships of Novel Cannabinoid Mimetics.
J. Med. Chem. 1995, 38, 3094–3105.
(17) (a) Huffman, J. W.; Dai, D.; Martin, B. R.; Compton, D. R. Design,
Synthesis and Pharmacology of Cannabimimetic Indoles. Bioorg. Med.
Chem. Lett. 1994, 4, 563–566. (b) Huffman, J. W.; Zengin, G.; Wu,
M-J; Lu, J.; Hynd, G.; Bushell, K.; Thompson, A. L. S.; Bushell, S.;
Tartal, C.; Hurst, D. P.; Reggio, P. H.; Selley, D. E.; Cassidy, M. P.;
Wiley, J. L.; Martin, B. R. Structure-Activity Relationships for 1-Alkyl-
3-(1-naphthoyl)indoles at the Cannabinoid CB1 and CB2 Receptors:
Steric and Electronic Effects of Naphthoyl Substituents. New Highly
Selective CB2 Receptor Agonists. Bioorg. Med. Chem. 2005, 13, 89–
112.
References
(1) Matsuda, L. A.; Lolait, S. J.; Brownstein, M. J.; Yound, A. C.; Bonner,
T. I. Structure of a Cannabinoid Receptor and Functional Expression
of the Cloned cDNA. Nature 1990, 346, 561–564.
(2) Munro, S.; Thomas, K. L.; Abu-Shaar, M. Molecular Characterization
of a Peripheral Receptor for Cannabinoids. Nature 1993, 365, 61–65.
(3) (a) Cabral, G. A.; Marciano-Cabral, F. Cannabinoid Receptors in
Microglia of the Central Nervous System: Immune Functional
Relevance. J. Leukocyte Biol. 2005, 78, 1192–1197. (b) Van Sickle,
M. D.; Duncan, M.; Kingsley, P. J.; Mouihate, A.; Urbani, P.; Mackie,
K.; Stella, N.; Makriyannis, A.; Piomelli, D.; Davison, J. S.; Marnett,
L. J.; Marzo, V. D.; Pittman, Q. J.; Patel, K. D.; Sharkey, K. A.
Identification and Functional Characterization of Brainstem Cannab-
inoid CB2 Receptors. Science 2005, 310, 329–332. (c) Beltramo, M.;
Bernardini, N.; Bertorelli, R.; Campanella, M.; Nicolussi, E.; Fred-
duzzi, S.; Reggiani, A. CB2 Receptor-Mediated Antihyperalgesia:
Possible Direct Involvement of Neural Mechanisms. Eur. J. Neurosci.
2006, 23, 1530–1538.
(4) Chapman, V.; Finn, D. P. Analgesic Effects of Cannabinoids: Sites
and Mechanisms of Action. ReV. Analg. 2003, 7, 25–39.
(5) (a) Hanus, L.; Breuer, A.; Tchilibon, S.; Shiloah, S.; Goldenberg, D.;
Horowitz, M.; Pertwee, R. G.; Ross, R. A.; Mechoulam, R.; Fride, E.
HU-308: A Specific Agonist for CB2, a Peripheral Cannabinoid
Receptor. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 14228–14233. (b)
Malan, T. P., Jr.; Ibrahim, M. M.; Lai, J.; Vanderah, T. W.;
Makriyannis, A.; Porreca, F. CB2 Cannabinoid Receptor Agonists: Pain
Relief without Psychoactive Effects? Curr. Opin. Pharmacol. 2003,
3, 62–67. (c) Clayton, N.; Marshall, F. H.; Bountra, C.; O’Shaughnessy,
C. T. CB1 and CB2 Cannabinoid Receptors Are Implicated in
Inflammatory Pain. Pain 2002, 96, 253–260.
(6) Quartiho, A.; Mata, H. P.; Ibrahim, M. M.; Vanderah, T. W.; Porreca,
F.; Makriyannis, A.; Malan, T. P., Jr. Inhibition of Inflammatory
Hyperalgesia by Activation of Peripheral CB2 Cannabinoid Receptors.
Anesthesiology 2003, 99, 955–960.
(7) (a) Flygar, J.; Gustafsson, K.; Kimby, E.; Christensson, B.; Sander,
B. Cannabinoid Receptor Ligands Mediate Growth Inhibition and Cell
Death in Mantel Cell Lymphoma. FEBS Lett. 2005, 579, 6885–6889.
(b) Herrera, B.; Carracedo, A.; Diez-Zaera, M.; Guzman, M.; Velasco,
G. p38 Mapk Is Involved in CB2 Receptor-Induced Apoptosis of
Human Leukaemia Cells. FEBS Lett. 2005, 579, 5084–5088.
(8) (a) Pryce, G.; Baker, D. Emerging Properties of Cannabinoid Medicines
in Management of Multiple Sclerosis. Trends Neurosci. 2005, 28, 272–
276. (b) Benito, C.; Romero, J. P.; Tolón, R. M.; Clemente, D.;
Docagne, F.; Hillard, C. J.; Guaza, C.; Romero, J. Cannabinoid CB1
and CB2 Receptors and Fatty Acid Amide Hydrolase Are Specific
Markers of Plaque Cell Subtypes in Human Multiple Sclerosis.
J. Neurosci. 2007, 27, 2396–2402. (c) Baker, D.; Pryce, G.; Croxford,
J. L.; Brown, P.; Pertwee, R. G.; Huffman, J. W.; Layward, L.
Cannabinoids control spasticity and tremor in a multiple sclerosis
model. Nature 2000, 404, 84–87.
(18) (a) Malan, T. P., Jr.; Ibrahim, M. M.; Deng, H.; Liu, Q.; Mata, H. P.;
Vanderah, T.; Porreca, F.; Makriyannis, A. CB2 cannabinoid receptor-
mediated peripheral antinociception. Pain 2001, 93, 239–245. (b)
Ibrahim, M.; Deng, H.; Zvonok, A.; Cockayne, D. A.; Kwan, J.; Mata,
H.; Vanderah, T. W.; Lai, J.; Porreca, F.; Makriyannis, A.; Malan,
T. P. Activation of CB2 Cannabinoid Receptors by AM1241 Inhibits
Experimental Neuropathic Pain: Pain Inhibition by Receptors Not
Present in the CNS. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 10529–
10533. (c) Makriyannis, A.; Deng, H. U.S. Patent 7,173,027, 2007.
(19) Malan, T. P., Jr.; Ibrahim, M. M.; Deng, H.; Liu, Q.; Mata, H. P.;
Vanderah, T.; Porreca, F.; Makriyannis, A. CB2 Cannabinoid Recep-
tor-Mediated Peripheral Antinociception. Pain 2001, 93, 239–245.
(20) Ibrahim, M. M.; Porreca, F.; Lai, J.; Albrecht, P. J.; Rice, F. L.;
Khodorova, A.; Davar, G.; Makriyannis, A.; Vanderah, T. W.; Mata,
H. P.; Malan, T. P., Jr. CB2 Cannabinoid Receptor Activation Produces
Antinociception by Stimulating Peripheral Release of Endogenous
Opiods. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3093–3098.
(21) Whiteside, G. T.; Gottshall, S. L.; Boulet, J. M.; Chaffer, S. M.;
Harrison, J. E.; Pearson, M. S.; Turchin, P. I.; Mark, L.; Garrison,
A. E.; Valenzano, K. J. A Role for Cannabinoid Receptors, but Not
Endogenous Opioids, in the Antinociceptive Activity of the CB2-
Selective Agonist, GW405833. Eur. J. Pharmacol. 2005, 528, 65–
72.
(22) Yao, B. B.; Mukherjee, S.; Fan, Y.; Garrison, T. R.; Daza, A. V.;
Grayson, G. K.; Hooker, B. A.; Dart, M. J.; Sullivan, J. P.; Meyer,
M. D. In Vitro Pharmacological Characterization of AM1241: a
Protean Agonist at the Cannabinoid CB2 Receptor? Br. J. Pharmacol.
2006, 149, 145–154.
(23) Bingham, B.; Jones, P. G.; Uveges, A. J.; Kotnis, S.; Lu, P.; Smith,
V. A.; Sun, S-C.; Resnick, L.; Chlenov, M.; He, Y.; Strassle, B. W.;
Cummons, T. A.; Piesla, M. J.; Harrison, J. E.; Whitside, G. T.;
Kennedy, J. D. Species-Specific in Vitro Pharmacological Effects of
the Cannabinoid Receptor 2 (CB2) Selective Ligand AM1241 and Its
Resolved Enantiomers. Br. J. Pharmacol. 2007, 151, 1061–1070.
(24) (a) Gallant, M.; Dufresne, C.; Gareau, Y.; Guay, D.; Leblanc, Y.; Prasit,
P.; Rochette, C.; Sawyer, N.; Slipetz, D. M.; Tremblay, N.; Metters,
K. M.; Labelle, M. New Class of Potent Ligands for the Human
Peripheral Cannabinoid Receptor. Bioorg. Med. Chem. Lett. 1996, 9,
(9) Ofek, O.; Karsak, M.; Leclerc, N.; Fogel, M.; Frenkel, B.; Wright,
K.; Tam, J.; Attar-Namdar, M.; Kram, V.; Shohami, E.; Mechoulam,
R.; Zimmer, A.; Bab, I. Peripheral Cannabinoid Receptor, CB2,
Regulates Bone mass. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 696–
701.
(10) Benito, C.; Núñez, E.; Tolón, R. M.; Carrier, E. J.; Rábano, A.; Hillard,
C. J.; Romero, J. Cannabinoid CB2 Receptors and Fatty Acid Amide
Hydrolase are Selectively Overexpressed in Neuritic Plaque-Associated