10.1002/chem.201900078
Chemistry - A European Journal
COMMUNICATION
electrophilic and increases product yield (e.g., compounds 4b, 5b,
15b). In contrast, iminium ions with electron-donating groups at
the N-phenyl substituent have a LUMO at higher energy and are
therefore less reactive towards weakly nucleophilic hydroperoxide
anion, which results in lower yields of desired products (e.g.,
compounds 2b, 3b, 12b).
Experimental Section
For detailed synthetic procedures, 1H, 19F and 13C NMR, mass-
spectroscopic data of all synthesized compounds, see the Supporting
Information.
Because of our ongoing interest to identify new efficient
antiviral agents, we analyzed selected cyclic tertiary amines 2a
and 15a and their corresponding C-H oxidation products 2b and
15b for their inhibitory activity against human cytomegalovirus
(HCMV). Interestingly, compared to antiviral activity of reference
drug ganciclovir (EC50 = 2.6 ± 0.5 µM), in use for standard
treatment of HCMV infections,[31] cyclic amine compounds 2a and
15a were inactive, while corresponding -lactams 2b (EC50 = 4.6
± 1.8 µM) and 15b (EC50 = 9.0 ± 0.2 µM) exerted strong anti-
HCMV activity in the absence of cytotoxicity (HFFs CC50 >100 µM)
(Table 2). These results underline the attractiveness of this C-H
photooxidation method allowing easy and direct generation of
highly bioactive compounds from poorly active or inactive
precursors.
Acknowledgements
S.B.T. and M.M. gratefully acknowledge the financial support from
the Deutsche Forschungsgemeinschaft (DFG) by grants TS
87/15-1, TS 87/17-1, TS 87/16-3, MM 1289/7-3, MM 1289/11-1
and from the Wilhelm Sander-Stiftung by grants Nr. 2014.019.1
and Nr. 2018.121.1. S.B.T. also thanks the Interdisciplinary
Center for Molecular Materials (ICMM) and Emerging Fields
Initiative (EFI) “Chemistry in Live Cells” supported by Friedrich-
Alexander-Universität Erlangen-Nürnberg for funding.
Keywords: cyclic amine • lactam • organic dye • metal-free C-H
oxidation • aerobic photooxidation • antiviral alkaloids
Table 2: EC50 values of anti-HCMV activity (AD169-GFP) determined in primary
HFFs
[1]
[2]
V. R. Pattabiraman, J. W. Bode, Nature 2011, 480, 471-479.
a) R. E. Schwartz, G. L. Helms, E. A. Bolessa, K. E. Wilson,
R. A. Giacobbe, J. S. Tkacz, G. F. Bills, J. M. Liesch, D. L.
Zink, J. E. Curotto, B. Pramanik, J. C. Onishi, Tetrahedron
1994, 50, 1675-1686; b) U. Das, S. Das, B. Bandy, J. P.
Stables, J. R. Dimmock, Bioorganic Med. Chem. 2008, 16,
3602-3607.
Compound
HCMV EC50 (µM)[a]
2.6 ± 0.5
HFFs CC50 (µM)[a]
Ganciclovir
>100
n.d.
2a
2b
not active
[3]
[4]
P. Coutrot, S. Claudel, C. Didierjean, C. Grison, Bioorganic
Med. Chem. Lett. 2006, 16, 417-420.
4.6 ± 1.8
>100
n.d.
K. Bush, in Antibiotic and Chemotherapy (Ninth Edition)
(Eds.: R. G. Finch, D. Greenwood, S. R. Norrby, R. J.
Whitley), W.B. Saunders, London, 2010, pp. 200-225.
P. W. Baures, D. S. Eggleston, K. F. Erhard, L. B. Cieslinski,
T. J. Torphy, S. B. Christensen, J. Med. Chem. 1993, 36,
3274-3277.
15a
15b
not active
9.0 ± 0.2
>100
[5]
[6]
[a] The cell culture-based systems for the determination of EC50 and CC50
values (neutral red uptake assay) has been previously reported.[32] GFP: green
fluorescent protein; HCMV: human cytomegalovirus; HFF: human fibroblast;
EC50 = concentration inhibiting 50% viral growth; CC50 = 50% cytotoxic
concentration. n.d. = not determined.
a) A. Lei, J. P. Waldkirch, M. He, X. Zhang, Angew. Chem.
Int. Ed. 2002, 41, 4526-4529; b) J. A. Zablocki, E. Elzein, X.
Li, D. O. Koltun, E. Q. Parkhill, T. Kobayashi, R. Martinez,
B. Corkey, H. Jiang, T. Perry, R. Kalla, G. T. Notte, O.
Saunders, M. Graupe, Y. Lu, C. Venkataramani, J.
Guerrero, J. Perry, M. Osier, R. Strickley, G. Liu, W.-Q.
Wang, L. Hu, X.-J. Li, N. El-Bizri, R. Hirakawa, K. Kahlig, C.
Xie, C. H. Li, A. K. Dhalla, S. Rajamani, N. Mollova, D.
Soohoo, E.-I. Lepist, B. Murray, G. Rhodes, L. Belardinelli,
M. C. Desai, J. Med. Chem. 2016, 59, 9005-9017.
a) D. M. Roll, C. M. Ireland, H. S. M. Lu, J. Clardy, J. Org.
Chem. 1988, 53, 3276-3278; b) L. K. Larsen, R. E. Moore,
G. M. L. Patterson, J. Nat. Prod. 1994, 57, 419-421; c) A.
Kornienko, A. Evidente, Chem. Rev. 2008, 108, 1982-2014.
a) E. Grunberg, M. J. Kramer, M. Buck, P. W. Trown,
Chemotherapy 1978, 24, 77-80; b) J. M. Harris, A. Padwa,
Org. Lett. 2003, 5, 4195-4197; c) A. Putey, F. Popowycz,
Q.-T. Do, P. Bernard, S. K. Talapatra, F. Kozielski, C. M.
Galmarini, B. Joseph, J. Med. Chem. 2009, 52, 5916-5925.
D. M. Floyd, P. Stein, Z. Wang, J. Liu, S. Castro, J. A. Clark,
M. Connelly, F. Zhu, G. Holbrook, A. Matheny, M. S. Sigal,
J. Min, R. Dhinakaran, S. Krishnan, S. Bashyum, S. Knapp,
R. K. Guy, J. Med. Chem. 2016, 59, 7950-7962.
In conclusion, we demonstrated that substituted tryptolines
and tetrahydroisoquinolines can be directly oxidized efficiently via
a
visible-light-mediated photocatalytic process towards
corresponding -lactams under ambient conditions using organic
dye Rose Bengal as photocatalyst and molecular oxygen as
oxidant. The visible-light-driven mild C-H oxidation protocol allows
to easily generate new highly functionalized Strychnocarpine
alkaloid derivatives. The modulated bioactive properties of -
lactams were demonstrated by the example of a strong antiviral
activity in vitro against HCMV (EC50 down to 4.6±1.8ꢀμM).
Moreover, the cytotoxicity of -lactams for primary HFFs (CC50)
was undetectable at concentrations up to 100ꢀμM. Thus, the
obtained products can be regarded as selective, which is one
of the most important aspects in drug design. All new -lactams
are currently under further biological investigation so that further
results will be reported elsewhere.
[7]
[8]
[9]
[10]
[11]
R. Jokela, M. Lounasmaa, Tetrahedron 1987, 43, 6001-
6006.
K. Huber, L. Brault, O. Fedorov, C. Gasser, P.
Filippakopoulos, A. N. Bullock, D. Fabbro, J. Trappe, J.
Schwaller, S. Knapp, F. Bracher, J. Med. Chem. 2012, 55,
403-413.
This article is protected by copyright. All rights reserved.