B. Jiang, Z.-G. Huang / Tetrahedron Letters 48 (2007) 1703–1706
1705
Okada, Y.; Minami, T.; Umezu, Y.; Nishikawa, S.; Mori,
R.; Nakayama, Y. Tetrahedron: Asymmetry 1991, 2, 667–
682.
backbone, while the quasi-equatorial lone pair might ex-
hibit distinct donating and coordinating characteristics.
Assuming a bidentate chelating mode, the preferential
attack of deprotonated malonate trans to the phospho-
rous atom at a W-type 1,3-diphenyl allyl complex would
lead to an (R)-product.
8. (a) Kuriyama, M.; Nagai, K.; Yamada, K.-I.; Miwa, Y.;
Taga, T.; Tomioka, K. J. Am. Chem. Soc. 2002, 124, 8932–
8939; Arylation: (b) Kuriyama, M.; Soeta, T.; Hao, X.;
Chen, Q.; Tomioka, K. J. Am. Chem. Soc. 2004, 126,
8128–8129.
To conclude, the chiral P,O-ligands have been derived
from N,O-(1,2-phenylene)prolinols, which have been
generated by the N,O-arylation of (S)-prolinols and 1-
bromo-2-iodo-benzene with CuI-catalysis. Their use in
Pd-catalyzed asymmetric allylic alkylation of malonate
with 1,3-dipenyl 2-propenyl acetate has been demon-
strated, and a P,O-bidentate working mode is proposed
to rationale the stereochemical outcome.
9. (a) Kim, Y. K.; Lee, S. J.; Ahn, K. H. J. Org. Chem. 2000,
65, 7807–7813; (b) Lee, Y.-H.; Kim, Y. K.; Son, J.-H.;
Ahn, K. H. Bull. Korean Chem. Soc. 2003, 24, 225–228; (c)
Mino, T.; Kashihara, K.; Yamashita, M. Tetrahedron:
Asymmetry 2001, 12, 287–291; Similar atropisomeric P,O-
ligands: (d) Clayden, J.; Johnson, P.; Pink, J. H.; Helliwell,
M. J. Org. Chem. 2000, 65, 7033–7040; (e) Dai, W.-M.;
Yeung, K. K. Y.; Liu, J.-T.; Zhang, Y.; Williams, I. D.
Org. Lett. 2002, 4, 1615–1618; Application in Heck
reaction: (f) Dai, W.-M.; Yeung, K. K. Y.; Wang, Y.
Tetrahedron Lett. 2004, 60, 4425–4430.
10. (a) Zhang, A.; RajanBabu, T. V. Org. Lett. 2004, 6, 1515–
1517; (b) Zhang, A.; RajanBabu, T. V. Org. Lett. 2004, 6,
3159–3161; (c) Zhang, A.; RajanBabu, T. V. J. Am. Chem.
Soc. 2006, 128, 54–55; MOP-type Ligands: (d) Nomura,
N.; Jin, J.; Park, H.; RajanBabu, T. V. J. Am. Chem. Soc.
1998, 120, 459–460; (e) RajanBabu, T. V.; Nomura, N.;
Jin, J.; Radetich, B.; Park, H.; Nandi, M. Chem. Eur. J.
1999, 5, 1963–1968; (f) Nandi, M.; Jin, J.; RajanBabu, T.
V. J. Am. Chem. Soc. 1999, 121, 9899–9900; (g) Rajan-
Babu, T. V.; Nomura, N.; Jin, J.; Nandi, M.; Park, H.;
Sun, X. J. Org. Chem. 2003, 68, 8431–8446.
Acknowledgement
We thank the National Natural Science Foundation of
China and Shanghai Municipal Committee of Science
and Technology for financial support.
References and notes
1. (a) Pfaltz, A.; Drury, W. J., III. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 5723–5726; (b) Guiry, P. J.; Saunders,
C. P. Adv. Synth. Catal. 2004, 346, 497–537; (c) Vyskocil,
S.; Smrcina, M.; Hanus, V.; Polasek, M.; Kocovsky, P. J.
Org. Chem. 1998, 63, 7738–7748.
2. (a) Takahashi, Y.; Yamamoto, Y.; Katagiri, K.; Danjo,
H.; Yamaguchi, K.; Imamoto, T. J. Org. Chem. 2005, 70,
9009–9012; (b) Terfort, A.; Brunner, H. J. Chem. Soc.,
Perkin Trans. 1 1996, 1467–1479; (c) Mateus, N.; Routa-
boul, L.; Daran, J.-C.; Manoury, E. J. Organomet. Chem.
2006, 691, 2297–2310.
3. (a) Lagasse, F.; Kagan, H. B. Chem. Pharm. Bull. 2000, 48,
315–324; (b) Hayashi, T. Acc. Chem. Res. 2000, 33, 354–
362; (c) Bader, A.; Lindner, E. Coord. Chem. Rev. 1991,
108, 27–110.
4. (a) Knowles, W. S. Angew. Chem., Int. Ed. 2002, 41, 1998–
2007; (b) Hayashi, T.; Iwamura, H.; Naito, M.; Matsu-
moto, Y.; Uozumi, Y.; Miki, M.; Yanagi, K. J. Am. Chem.
Soc. 1994, 116, 775–776; (c) Edwards, C. W.; Shipton, M.
R.; Alcock, N. W.; Clase, H.; Wills, M. Tetrahedron 2003,
59, 6473–6480.
5. (a) Kumar, P. G. A.; Dotta, P.; Hermatschweiler, R.;
Pregosin, P. S.; Albinati, A.; Rizzato, S. Organometallics
2005, 24, 1306–1314; (b) Kocovsky, P.; Vyskocil, S.;
Cisarova, I.; Sejbal, J.; Tislerova, I.; Smrcina, M.; Lloyd-
Jones, G. C.; Stephen, S. C.; Butts, C. P.; Murray, M.;
Langer, V. J. Am. Chem. Soc. 1999, 121, 7714–7715.
6. (a) Grushin, V. V. Chem. Rev. 2004, 104, 1629–1662; (b)
Cote, A.; Boezio, A. A.; Charette, A. B. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 5405–5410; (c) Boezio, A. A.;
Pytkowicz, J.; Cote, A.; Charette, A. B. J. Am. Chem. Soc.
2003, 125, 14260–14261; (d) Faller, J. W.; Grimmond, B.
J.; D’Alliessi, D. J. J. Am. Chem. Soc. 2001, 123, 2525–
2529; (e) Marshall, W. J.; Grushin, V. V. Organometallics
2003, 22, 555–562.
11. Jiang, B.; Huang, Z.-G.; Cheng, K.-J. Tetrahedron:
Asymmetry 2006, 17, 942–951.
12. Buchwald et al. reported that great selectivity (N/O >50/1)
was achieved by choice of NaOH and i-PrOH or DMSO/
H2O as the base and solvent in CuI-catalyzed C–N or C–O
bond formation between amino alcohols and iodoarenes:
(a) Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 3703–
3706; (b) Lu, Z.; Twieg, R. J.; Huang, S. D. Tetrahedron
Lett. 2003, 44, 6289–6292.
20
13. Compound 9b: ½aꢀD +75 (c 0.70, CHCl3). IR: 3464, 2972,
2871, 1584, 1473, 1301, 1157, 1134, 1112, 1027, 952,
1
755 cmꢁ1. H NMR (300 MHz, CDCl3): d 7.57 (dd, 1H,
J = 1.0, 7.6 Hz), 7.28–7.23 (m, 2H), 6.94–6.89 (m, 1H),
3.78 (dd, 1H, J = 6.6, 8.1 Hz), 3.69–3.61 (m, 1H), 2.83–
2.75 (m, 1H), 2.67 (s, 1H), 2.10–1.78 (m, 4H), 1.14 (s, 3H),
0.90 (s, 3H). 13C NMR (75 MHz): d 151.7, 133.4, 128.2,
124.8, 123.8, 122.6, 72.7, 69.3, 57.7, 29.1, 28.0, 25.9, 25.2.
EIMS: 284 ([M+H]+, 10.2%), 286 (8.6%), 224 (83%), 226
(100%); HRMS: [M+H]+ calcd for C13H19NOBr+
20
284.0645, found 284.0648. Compound 9c: ½aꢀD +56.5 (c
0.99, CHCl3). IR: 3481, 2968, 1584, 1472, 1302, 1130,
1027, 959, 755 cmꢁ1. 1H NMR: d 7.57 (d, 1H, J = 7.8 Hz),
7.26–7.22 (m, 2H), 6.95–6.89 (m, 1H), 3.88 (t, 1H,
J = 7.5 Hz), 3.62–3.54 (m, 1H), 2.81–2.74 (m, 1H), 2.76
(s, 1H), 2.08–2.00 (m, 2H), 1.88–1.74 (m, 2H), 1.63–1.53
(m, 1H), 1.40–1.33 (m, 1H), 1.25–1.01 (m, 2H), 0.85 (t, 3H,
J = 7.5 Hz), 0.62 (t, 3H, J = 7.6 Hz). 13C NMR: d 152.0,
133.3, 128.0, 124.8, 123.7, 122.8, 76.2, 65.9, 58.0, 29.3,
27.3, 25.9, 25.7, 7.9, 7.7. EIMS: 312 ([M+H]+, 1.9%), 314
(1.8%), 224 (85%), 226 (100%); HRMS: [M+H]+ calcd for
C15H23NOBr+ 312.0958, found 312.0970. Compound 9d:
20
Mp: 155–156 °C. ½aꢀD +112.5 (c 1.07, CHCl3). IR: 3385,
3057, 2841, 1659, 1599, 1587, 1493, 1473, 1449, 1373, 1027,
1
704, 695 cmꢁ1. H NMR: d 7.59–7.56 (m, 2H), 7.36–7.29
(m, 4H), 7.24–7.13 (m, 2H), 7.09 (d, 1H, J = 7.5 Hz), 6.98
(t, 1H, J = 7.6 Hz), 6.86 (t, 2H, J = 7.8 Hz), 6.78–6.68 (m,
2H), 4.94 (dd, 1H, J = 4.4, 8.9 Hz), 4.64 (s, 1H), 3.64–3.59
(m, 1H), 2.79 (m, 1H), 2.17–2.12 (m, 1H), 1.97–1.82 (m,
3H). 13C NMR: d 148.86, 145.96, 145.72, 132.40, 130.03,
7. (a) Inoue, H.; Nagaoka, Y.; Tomioka, K. J. Org. Chem.
2002, 67, 5864–5867; (b) You, S.-L.; Luo, Y.-M.; Deng,
W.-P.; Hou, X.-L.; Dai, L.-X. J. Organomet. Chem. 2001,
637, 845–849; (c) Knuhl, G.; Sennhenn, P.; Helmchen, G.
J. Chem. Soc., Chem. Commun. 1995, 1845–1846; (d)