Enantioselective Synthesis of Vinylcyclopropanes and Vinylepoxides
A R T I C L E S
Chart 1
Scheme 1
et al.8 also reported the reaction of a chiral silylated allylic sulfur
ylide with R-aminoacrylate to afford the desired vinylcyclo-
propane with 71% de and 75% ee.
Ylides proved to be efficient reagents not only for construct-
ing carbon-carbon double bonds but also for preparing small
ring compounds such as epoxides,9 aziridines,9b,9c,10 and
cyclopropanes.9b,9c,11 In a previous study on ylide chemistry,12
we found that lithium ion could switch the diastereoselectivity
of cyclopropanation reaction of telluronium allylides with R,â-
unsaturated esters or amides. The mechanism for this tuning
has been rationalized as the formation of a chelating six-
membered ring transition state (A in Chart 1) by coordination
of lithium ion with carbonyl oxygen and ylidic carbanion
simultaneously.13 On the basis of this mechanistic insight, we
designed chiral ylides 1 with a hydroxyl group at the â-position
of the sulfur atom by a sidearm approach.14 It is envisaged that
ylides of type 1 might form a rigid six-membered ring in the
presence of metal ion as shown in Chart 1 (B in Chart 1) and
thus the chirality of ylidic carbon is fixed, beneficial to the
diastereoselectivity and enantioselectivity. On the basis of this
strategy, we recently developed a highly enantioselective
cyclopropanation reaction and reported that ylide 1a, generated
from the corresponding salt 4a and t-BuOK (3.0 equiv) in situ,
could react in a stoichiometric manner with a variety of R,â-
unsaturated carbonyl compounds in one pot to afford 1,3-
disubstituted-2-silylvinylcyclopropanes 10 in high enantiomeric
excess (ee) and in good to high yields.15 The substrates,
however, were limited to â-aryl-R,â-unsaturated esters, amides,
ketones, and nitriles. For methyl crotonate, only 20% yield was
obtained due to the rearrangement of the sulfur ylide, although
the enantioselectivity was high. Very recently, we found that
both exo-type sulfur salt 4b and endo-type sulfur salt 5b also
worked well in the cyclopropanation of both â-aryl- and â-alkyl-
R,â-unsaturated carbonyl compounds and nitriles. Compared
with the exo ones, remarkably, the endo ones gave the opposite
enantioselectivity. Thus, the new development provides an easy
access to both enantiomers of trisubstituted cyclopropanes. We
also extended this reaction successfully to the epoxidation of
aromatic aldehydes and catalytic asymmetric ylide cyclopro-
panation. In this paper, we wish to report the details of these
reactions and their applications in organic synthesis, as well as
the theoretical studies toward understanding the origins of the
diastereo- and enantioselectivities of these reactions.
(4) For leading references, see: (a) Ma, S.; Jiao, N.; Yang, Q.; Zheng, Z. J.
Org. Chem. 2004, 69, 6463. (b) Yun, Y. K.; Godula, K.; Cao, Y.;
Donaldson, W. A. J. Org. Chem. 2003, 68, 901. (c) Cossy, J.; Blanchard,
N.; Meyer, C. Eur. J. Org. Chem. 2001, 339. (d) Cheng, D.; Knox, K. R.;
Cohen, T. J. Am. Chem. Soc. 2000, 122, 412. (e) Dorizon, P.; Su, G.;
Ludvig, G.; Nikitina, L.; Paugam, R.; Ollivier, J.; Salau¨n, J. J. Org. Chem.
1999, 64, 4712. (f) Pyne, S. G.; Dong, Z.; Skelton, B. W.; White, A. H. J.
Org. Chem. 1997, 62, 2337.
(5) (a) Aratani, T.; Yoneyoshi, Y.; Nagase, T. Tetrahedron Lett. 1977, 18,
2599. (b) Aratani, T. Pure Appl. Chem. 1985, 57, 1839. (c) Bachmann, S.;
Furler, M.; Mezzetti, A. Organometallics 2001, 20, 2102. (d) Charette, A.
B.; Juteau, H. J. Am. Chem. Soc. 1998, 120, 11943. (e) Davies, H. M. L.;
Huby, N. J. S.; Cantrell, W. R.; Olive, J. L. J. Am. Chem. Soc. 1993, 115,
9468. (f) Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall,
M. J. J. Am. Chem. Soc. 1996, 118, 6897. (g) Davies, H. M. L.; Panaro, S.
A. Tetrahedron Lett. 1999, 40, 5287.
(6) Hanessian, S.; Andreotti, D.; Gomtsyan, A. J. Am. Chem. Soc. 1995, 117,
10393.
(7) (a) Nagasawa, T.; Handa, Y.; Onoguchi, Y.; Ohba, S.; Suzuki, K. Synlett.
1995, 739. (b) Taylor, R. E.; Schmitt, M. J.; Yuan, H. Org. Lett. 2000, 2,
601. (c) Taylor, R. E.; Engelhardt, F. C.; Schmitt, M. J.; Yuan, H. J. Am.
Chem. Soc. 2001, 123, 2964.
(8) Aggarwal, V. K.; Alonso, E.; Fang, G.; Ferrar, M.; Hynd, G.; Porcelloni,
M. Angew. Chem., Int. Ed. 2001, 40, 1443.
(9) For reviews, see: (a) Aggarwal, V. K.; Winn, C. L. Acc. Chem. Res. 2004,
37, 611. (b). Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Chem. ReV. 1997, 97,
2641. (c) Dai, L.-X.; Hou, X.-L.; Zhou, Y.-G. Pure Appl. Chem. 1999, 71,
369. Selective examples, see: (d) Aggarwal, V. K.; Bae, I.; Lee, H.-Y.;
Richardson, J.; Williams, D. T. Angew. Chem., Int. Ed. 2003, 42, 3274.
(e) Aggarwal, V. K.; Alonso, E.; Bae, I.; Hynd, G.; Lydon, K. M.; Palmer,
M. J.; Patel, M.; Porcelloni, M.; Richardson, J.; Stenson, R. A.; Studley, J.
R.; Vasse, J.-L.; Winn, C. L. J. Am. Chem. Soc. 2003, 125, 10926. (f)
Davoust, M.; Brie`re, J.-F.; Jaffre`s, P.-A.; Metzner, P. J. Org. Chem. 2005,
70, 4166.
Results and Discussion
(10) For recent examples, see: (a) Yang, X.-F.; Zhang, M.-J.; Hou, X.-L.; Dai,
L.-X. J. Org. Chem. 2002, 67, 8097. (b) Aggarwal, V. K.; Vasse, J.-L.
Org. Lett. 2003, 5, 3987. (c) Morton, D.; Pearson, D.; Field, R. A.;
Stockman, R. A. Org. Lett. 2004, 6, 2377. (d) Arini, L. G.; Sinclair, A.;
Szeto, P.; Stockman, R. A. Tetrahedron Lett. 2004, 45, 1589.
(11) For reviews, see: (a) Huang, Y.-Z.; Tang, Y.; Zhou, Z.-L. Tetrahedron,
1998, 53, 1667. (b) Tang, Y.; Ye, S.; Huang, Z.-Z.; Huang, Y.-Z.
Heteroatom Chem. 2002, 13, 463. For recent examples, see: (c) Papa-
georgious, C. D.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2003,
42, 828. (d) Bremeyer, N.; Smith, S. C.; Ley, S. V.; Gaunt, M. J. Angew.
Chem., Int. Ed. 2004, 43, 2681. (e) Papageorgious, C. D.; Cubillo de Dios,
M. A.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2004, 43, 4641. (f)
Kunz, R. K.; Macmillan: D. W. C. J. Am. Chem. Soc. 2005, 127, 3240.
(g) Huang, K.; Huang, Z.-Z. Synlett. 2005, 1621.
(12) (a) Ye, S.; Tang, Y.; Dai, L.-X. J. Org. Chem. 2000, 65, 6257. (b) Ye, S.;
Tang, Y.; Dai, L.-X. J. Org. Chem. 2001, 66, 5717. (c) Huang, Z.-Z.; Tang,
Y. J. Org. Chem. 2002, 67, 5320. (d) Li, K.; Huang, Z.-Z.; Tang, Y.
Tetrahedron Lett. 2003, 44, 4137. (e) Li, K.; Deng, X.-M.; Tang, Y. Chem.
Commun. 2003, 2704. (f) Liao, W.-W.; Li, K.; Tang, Y. J. Am. Chem.
Soc. 2003, 125, 13030. (g) Liao, W.-W.; Deng, X.-M.; Tang, Y. Chem.
Commun. 2004, 1516. (h) Zheng, J.-C.; Liao, W.-W.; Tang, Y.; Sun, X.-
L.; Dai, L.-X. J. Am. Chem. Soc. 2005, 127, 12222. (i) Tang, Y.; Ye, S.;
Sun, X.-L. Synlett. 2005, 2720.
Synthesis of Sulfonium Salts. Chiral sulfides 2 and 3 were
easily prepared from D-(+)-camphor in two steps by a known
procedure.16 The reactions of 2 and 3 with allylic bromides in
acetone result in sulfonium salts 4 and 5, respectively, in good
yields (Scheme 1).
Enantioselective Synthesis of Silylvinylcyclopropanes.
Initially, we tried the stepwise reaction of sulfonium salt 4a
(14) For sidearm approaching chiral catalyst, see: (a) Zhou, J.; Tang, Y. J. Am.
Chem. Soc. 2002, 124, 9030. (b) Ye, M.-C.; Zhou, J.; Huang, Z.-Z. Tang,
Y. Chem. Commun. 2003, 2554. (c). Zhou, J.; Ye, M.-C.; Huang, Z.-Z.
Tang, Y. J. Org. Chem. 2004, 69, 1309. (d) Zhou, J.; Tang, Y. Org. Biomol.
Chem. 2004, 2, 429. Sidearm approaching catalyst for Wittig-type reactions,
see: (e) Huang, Z.-Z.; Ye, S.; Xia, W.; Tang, Y. Chem. Commun. 2001,
1384. (f) Huang, Z.-Z.; Ye, S.; Xia, W.; Yu, Y.-H.; Tang, Y. J. Org. Chem.
2002, 67, 3096.
(15) Ye, S.; Huang, Z.-Z.; Xia, C.-A.; Tang, Y.; Dai, L.-X. J. Am. Chem. Soc.
2002, 124, 2432.
(13) (a) Tang, Y.; Huang, Y.-Z.; Dai, L.-X.; Chi, Z.-F.; Shi, L.-P. J. Org. Chem.
1996, 61, 5762. (b) Ye, S.; Yuan, L.; Huang, Z.-Z.; Tang, Y.; Dai, L.-X.
J. Org. Chem. 2000, 65, 6257.
(16) (a) Li, A.-H.; Dai L.-X.; Hou, X.-L.; Huang, Y.-Z.; Li, F.-W. J. Org. Chem.
1996, 61, 489. (b) Goodridge, R.; Hambley, T. W.; Haynes, R. K.; Ridley,
D. D. J. Org. Chem. 1988, 53, 3, 2881.
9
J. AM. CHEM. SOC. VOL. 128, NO. 30, 2006 9731