COMMUNICATIONS
Copper-Catalyzed Oxidative Transformation of Secondary Alcohols
2003, 125, 9983–9987; e) F. Couty, F. Durrat, D. Prim,
Experimental Section
Tetrahedron Lett. 2004, 45, 3725–3728; f) P. B. Palde,
T. F. Jamison, Angew. Chem. 2011, 123, 3587–3590;
Angew. Chem. Int. Ed. 2011, 50, 3525–3528; g) D. Can-
tillo, B. Gutmann, C. O. Kappe, J. Am. Chem. Soc.
2011, 133, 4465–4475.
Note: Proper safety precautions should be followed when
using azides.[17]
Typical Experimental Procedure
[7] a) H. Suzuki, Y. S. Hwang, C. Nakaya, Y. Matano, Syn-
thesis 1993, 1218–1220; b) A. S. El-Ahl, S. S. Elmorsy,
H. Soliman, F. A. Amer, Tetrahedron Lett. 1995, 36,
7337–7340; c) A. G. Schultz, A. Wang, C. Alva, A. Se-
bastian, S. D. Glick, D. C. Deecher, J. M. Bidlack, J.
Med. Chem. 1996, 39, 1956–1966.
Trimethylsilyl azide (1.1 mmol) was added dropwise to
a
well-stirred mixture of alcohol (0.5 mmol), Cu-
ACHTUNGTRENNUNG(ClO4)2·6H2O (0.025 mmol) in CH2Cl2 (2 mL), after 15 min
DDQ was added (0.6 mmol) and the reaction mixture was
stirred at room temperature for 1 h. Then the reaction mix-
ture was dissolved in small amount of EtOAc (2 mL),
passed through alumina, and purified on a silica gel column
using EtOAc/hexane as eluent.
[8] R. N. Butler, D. A. O. Donoghue, J. Chem. Res. Synop.
1983, 18.
[9] a) J. Zabrocki, J. B. Dunbar Jr, K. W. Marshall, M. V.
Toth, G. R. Marshall, J. Org. Chem. 1992, 57, 202–209;
b) E. W. Thomas, Synthesis 1993, 767–768; c) A. LeTir-
an, J. P. Stables, H. Kohn, Bioorg. Med. Chem. 2001, 9,
2693–2708; d) J. Xiao, X. Zhang, D. Wang, C. Yuan, J.
Fluorine Chem. 1999, 99, 83–85; e) A. F. Hegarty, N. M.
Tynan, S. Fergus, J. Chem. Soc. Perkin Trans. 2 2002,
1328–1334.
[10] During the revision of this manuscript, Echavarran and
co-workers reported a gold-catalyzed synthesis of tetra-
zoles. See: M. Gaydou, A. M. Echavarren, Angew.
Chem. 2013, 125, 13710–13713; Angew. Chem. Int. Ed.
2013, 52, 13468–13471.
[11] F. Chen, C. Qin, Y. Cui, N. Jiao, Angew. Chem. 2011,
123, 11689–11693; Angew. Chem. Int. Ed. 2011, 50,
11487–11491. The reaction of 1a under Jiaoꢀs conditions
did not furnish the tetrazole 2a, and resulted in the for-
mation of the corresponding chalcone (1,3-diphenyl-2-
propen-1-one) (see entry 19, Table 1).
[12] a) J. Wang, W. Huang, Z. Zhang, X. Xiang, R. Liu, X.
Zhou, J. Org. Chem. 2009, 74, 3299–3304; b) Y. Liu, B.
Yao, C. L. Deng, R. Y. Tang, X. G. Zhang, J. H. Li,
Org. Lett. 2011, 13, 1126–1129; c) M. Mayer, W. M.
Czaplik, A. Jacobi von Wangelin, Adv. Synth. Catal.
2010, 352, 2147–2152.
[13] a) M. Lamani, K. R. Prabhu, Angew. Chem. 2010, 122,
6772–6775; Angew. Chem. Int. Ed. 2010, 49, 6622–6625;
b) M. Lamani, P. Devadig, K. R. Prabhu, Org. Biomol.
Chem. 2012, 10, 2753–2759; c) B. V. Rokade, S. K. Mal-
ekar, K. R. Prabhu, Chem. Commun. 2012, 48, 5506–
5508; d) B. V. Rokade, K. R. Prabhu, J. Org. Chem.
2012, 77, 5364–5370.
[14] Unlike the reactions of benzyl ethers with DDQ, these
reactions are selective as benzyl group is tolerated
under the reaction conditions.
[15] See the Supporting Information for relevant spectra.
[16] While we were preparing this manuscript Jiao and co-
workers reported a silver-catalyzed nitrogenation of al-
kynes to access tetrazoles. See: T. Shen, T. Wang, C.
quin, N. Jiao, Angew. Chem. 2013, 125, 6809–6812;
Angew. Chem. Int. Ed. 2013, 52, 6677–6680.
Acknowledgements
KRP acknowledges IISc, CSIR (No. 01/2415/10-EMR-II) and
RL Fine Chem for financial support. We thank to Dr. A. R.
Ramesha for useful discussion. BVR thanks CSIR for
a senior research fellowship.
References
[1] a) J. F. Hartwig, Nature 2008, 455, 314–322; b) C. S.
Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215–1292;
c) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem.
Rev. 2010, 110, 624–655.
[2] a) J. C. Antilla, J. M. Baskin, T. E. Barder, S. L. Buch-
wald, J. Org. Chem. 2004, 69, 5578–5587; b) P. Y. S.
Lam, C. G. Clark, S. Saubern, J. Adams, M. P. Winters,
D. M. T. Chan, A. Combs, Tetrahedron Lett. 1998, 39,
2941–2944.
[3] S. J. Wittenberger, Org. Prep. Proced. Int. 1994, 26,
499–531.
[4] a) W. Song, Y. Wang, J. Qu, M. M. Madden, Q. Lin,
Angew. Chem. 2008, 120, 2874–2877; Angew. Chem. Int.
Ed. 2008, 47, 2832–2835; b) W. Song, Y. Wang, J. Qu,
Q. Lin, J. Am. Chem. Soc. 2008, 130, 9654–9655; c) Y.
Wang, W. J. Hu, W. Song, R. K. V. Lim, Q. Lin, Org.
Lett. 2008, 10, 3725–3728; d) Y. Wang, W. Song, W. J.
Hu, Q. Lin, Angew. Chem. 2009, 121, 5434–5437;
Angew. Chem. Int. Ed. 2009, 48, 5330–5333.
[5] For some recent examples, see: a) A. S. Gundugola,
K. L. Chandra, E. M. Perchellet, A. M. Waters, J. P. H.
Perchellet, S. Rayat, Bioorg. Med. Chem. Lett. 2010, 20,
3920–3924, and references cited therein; b) P. Srihari, P.
Dutta, R. S. Rao, J. S. Yadav, S. Chandrasekhar, P.
Thombare, J. Mohapatra, A. Chatterjee, M. R. Jain,
Bioorg. Med. Chem. Lett. 2009, 19, 5569–5572, and ref-
erences cited therein; c) M. A. Hiskey, D. Chavez,
D. L. Naud, S. F. Son, H. L. Berghout, C. A. Bolme,
Proc. Int. Pyrotech. Semin. 2000, 27, 3–14.
[6] a) J. S. Mihina, R. M. Herbst, J. Org. Chem. 1950, 15,
1082–1092; b) Z. P. Demko, K. B. Sharpless, Angew.
Chem. 2002, 114, 2214–2217; Angew. Chem. Int. Ed.
2002, 41, 2110–2113; c) Z. P. Demko, K. B. Sharpless,
Angew. Chem. 2002, 114, 2217–2220; Angew. Chem.
Int. Ed. 2002, 41, 2113–2116; d) F. Himo, Z. P. Demko,
L. Noodleman, K. B. Sharpless, J. Am. Chem. Soc.
[17] S. Brꢂse, K. Banert, (Eds.), Organic azides: Synthesis
and applications, Wiley, Chichester, 2010. Especially
relevant is: T. Keicher, S. Lçbbecke, Lab-Scale Synthe-
sis of azido compounds: Safety measures and analysis,
Organic azides: Synthesis and applications, (Eds.: S.
Brꢂse, K. Banert), Wiley, Chichester, 2010, Chapter 1,
pp 1–28.
Adv. Synth. Catal. 0000, 000, 0 – 0
ꢁ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5
ÞÞ
These are not the final page numbers!