C O M M U N I C A T I O N S
Scheme 3. Synthesis of the Left Segmenta
instability of the amine derived from 3. After extensive optimization,
we were able to overcome this problem by carrying out the
deprotection of the Fmoc group and subsequent condensation with
23 in one pot. The benzyl groups were then removed by BCl3 in
the presence of pentamethylbenzene, which served as a scavenger
of benzyl cation.19 Finally, spirocyclopropanation was effected by
treatment with NaHCO3 in aqueous DMF5b to furnish (+)-
yatakemycin (1), which is identical in all respects to the natural
product.
In conclusion, we have accomplished a highly efficient total
synthesis of (+)-yatakemycin (1) based on the novel coupling of
(S)-epichlorohydrin (6) with 2,6-dibromophenyllithium species and
the copper-mediated construction of all five aryl-nitrogen bonds
in 1. The present strategy consisting of these two technologies
allowed us to conduct a sub-gram-scale preparation of 1 in 13%
overall yield over 20 steps (longest linear steps) and should be
generally applicable to the synthesis of this class of compounds.
a Reagents and conditions: (a) Br2, FeCl3, 0 °C, 30 min, 88%; (b) K2CO3,
MeOH, rt, 6 h; (c) MnO2, CH2Cl2, rt, 18 h, 90% (2 steps); (d) NsCl, THF,
0 °C, 5 min; rt, 1 h; NaHCO3 aq., rt, 30 min; (e) NaBH4, MeOH, 0 °C, 1
h, 78% (2 steps); (f) CuI (10 mol %), CsOAc (2.5 equiv), DMSO, 80 °C,
24 h; (g) TPAP (2 mol %), NMO, MS 4 Å, CH2Cl2, rt, 1 h, 85% (2 steps);
(h) 18, 1,1,3,3-tetramethylguanidine, CH2Cl2, rt, 6 h, 84%; (i) CuI (1.0
equiv), CsOAc (5.0 equiv), DMSO, rt, 12 h, 77%; (j) PhSH, Cs2CO3, MeCN,
rt, 3 h, 95%; (k) FmocCl, NaHCO3, THF-H2O (3:1), rt, 10 min, 91%; (l)
Pd/C, H2, THF-EtOH (1:1), rt, 3 h; (m) MeSH, WSCD‚HCl, DMAP, DMF,
0 °C, 3 h, 76% (2 steps); (n) BCl3, CH2Cl2, 0 °C, 20 min, 97%.
Acknowledgment. We thank Dr. Yasuhiro Igarashi (Toyama
Prefectural University) for providing natural (+)-yatakemycin,
Grant-in-Aid from the Ministry of Education, Culture, Sports,
Science, and Technology, Japan for the financial support, and JSPS
(predoctoral fellowship for K.O.).
Supporting Information Available: Experimental details and
spectroscopic data (PDF). This material is available free of charge via
Scheme 4. Completion of the Total Synthesisa
References
(1) Igarashi, Y.; Futamata, K.; Fujita, T.; Sekine, A.; Senda, H.; Naoki, H.;
Furumai, T. J. Antibiot. 2003, 56, 107.
(2) (a) Boger, D. L.; Machiya, K. J. Am. Chem. Soc. 1992, 114, 10056. (b)
Fukuda, Y.; Terashima, S. Tetrahedron Lett. 1997, 38, 7207. (c) Muratake,
H.; Tonegawa, M.; Natsume, M. Chem. Pharm. Bull. 1998, 46, 400 and
references therein.
(3) (a) Fukuda, Y.; Itoh, Y.; Nakatani, K.; Terashima, S. Tetrahedron 1994,
50, 2793. (b) Boger, D. L.; McKie, J. A.; Nishi, T.; Ogiku, T. J. Am.
Chem. Soc. 1996, 118, 2301.
(4) (a) Kelly, R. C.; Gebhard, I.; Wicnienski, N.; Aristoff, P. A.; Johnson, P.
D.; Martin, D. G. J. Am. Chem. Soc. 1987, 109, 6837. (b) Boger, D. L.;
Coleman, R. S. J. Am. Chem. Soc. 1988, 110, 1321. (c) Bolton, R. E.;
Moody, C. J.; Pass, M.; Rees, C. W.; Tojo, G. J. Chem. Soc., Perkin
Trans. 1 1988, 2491. For a review on CC-1065 and duocarmycins, see:
(d) Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.; Goldberg, J. A. Chem.
ReV. 1997, 97, 787.
(5) (a) Parrish, J. P.; Kastrinsky, D. B.; Wolkenberg, S. E.; Igarashi, Y.; Boger,
D. L. J. Am. Chem. Soc. 2003, 125, 10971. (b) Tichenor, M. S.; Kastrinsky,
D. B.; Boger, D. L. J. Am. Chem. Soc. 2004, 126, 8396.
(6) (a) Yamada, K.; Kubo, T.; Tokuyama, H.; Fukuyama, T. Synlett 2002,
231. (b) Okano, K.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2003, 5,
4987. For a review, see: (c) Ley, S. V.; Thomas, A. W. Angew. Chem.,
Int. Ed. 2003, 42, 5400. (d) Kwong, F. Y.; Buchwald, S. L. Org. Lett.
2003, 5, 793. (e) Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453.
(7) Yamada, K.; Kurokawa, T.; Tokuyama, H.; Fukuyama, T. J. Am. Chem.
Soc. 2003, 125, 6630.
(8) Hsin, L.-W.; Dersch, C. M.; Baumann, M. H.; Stafford, D.; Glowa, J. R.;
Rothman, R. B.; Jacobson, A. E.; Rice, K. C. J. Med. Chem. 2002, 45,
1321.
(9) Staudinger, H.; Meyer, J. HelV. Chim. Acta 1919, 2, 635.
(10) Kan, T.; Fukuyama, T. Chem. Commun. 2004, 353.
(11) For the details of catalytic amination, see Supporting Information.
(12) Beletskaya, I. P.; Cheprakov, A. V. Chem. ReV. 2000, 100, 3009.
(13) Kolar, A. J.; Olsen, R. K. Synthesis 1977, 457.
a Reagents and conditions: (a) pyridine, CH2Cl2, 0 °C, 5 min, quant;
(b) TBAF, THF, rt, 30 min; evaporation; MsCl, pyridine, CH2Cl2, rt, 4 h,
97%; (c) LiOH‚H2O, THF-H2O (3:1), rt, 18 h, 92%; (d) TBAF, THF, rt,
30 min; WSCD‚HCl; 23, HOBt, THF, rt, 2 h, 96%; (e) BCl3 (4.0 equiv),
pentamethylbenzene (10 equiv), CH2Cl2, -78 °C, 15 min, 83%; (f)
NaHCO3, DMF-H2O (2:1), rt, 2 h, 94%.
segment 4 was also prepared in a straightforward manner by using
the aryl amination strategy.18
Having synthesized the requisite three segments, we then turned
to the facile assembly of these compounds (Scheme 4). After
coupling of the middle segment 2 with the right-hand segment 4
by acylation, the TBS ether was converted into a mesylate.
Subsequent hydrolysis of the methyl ester and concomitant removal
of the Cbz group then provided 23. Initially, the crucial coupling
with the left-hand segment met with limited success due to the
(14) Venkov, A. P.; Lukanov, L. K. Synthesis 1989, 59.
(15) Kelly, T. R.; Chandrakumar, N. S.; Saha, J. K. J. Org. Chem. 1989, 54,
980.
(16) Maryanoff, B. E.; Reitz, A. B. Chem. ReV. 1989, 89, 863.
(17) Rawal, V. H.; Cava, M. P. J. Am. Chem. Soc. 1986, 108, 2110.
(18) For the preparation, see Supporting Information.
(19) In the absence of pentamethylbenzene, 25 was obtained in low yield.
JA0619455
9
J. AM. CHEM. SOC. VOL. 128, NO. 22, 2006 7137