C O M M U N I C A T I O N S
Scheme 1. Synthesis of the Molecular Star 1 and the Molecular
Angle 2a
-5.5 ( 2° between the unit cell vector a and the main symmetry
axis of HOPG was observed as shown in SI (Figure S3).
In conclusion, the self-assembly of two molecular structures 1 and
2 comprising diacetylene and acetylene interlinked benzene and
pentafluorobenzene branches at the solid/liquid interface resulting in
two-dimensional chiral porous networks is described. The spontaneous
formation of these stable large area surface architectures is assumingly
driven by the compensation of the dipole moments of the branches
and the formation of aryl-H· · ·F hydrogen bonds. The absence of
alkyl chains, which are known to direct the self-assembly of rigid
molecular cores,5 is noteworthy. Currently, we are further function-
alizing these synthons to profit from their large area periodicity.
a Conditions: (a) HC2(C6H4)C2Si(C3H7)3, Pd(PPh3)4, N(Et)3, CuI, 40 °C,
20 h, 4: 77%, 7: 94%; (b) TBAF, wet THF, rt, 5: 71%, 8: 80%; (c)
Pd2(dba)3 ·CHCl3, (i-Pr)2EtN, CuI, toluene, rt, 3 h, 1: 52%, 2: 55%.
the branches of individual star-shaped 1. The parameters of a unit cell
have been determined to be a ) b ) 3.3 ( 0.2 nm, R ) 60 ( 2°. The
length of the individual bright stripe corresponds with 2.14 nm to the
length of the molecular branches (2.16 nm by MM2 calculation). Two
adjacent branches belonging to two different molecules are antiparallel
to each other, maximizing their overlap. The terminal pentafluoroben-
zene units point to the meta-di(phenylethynyl)benzene center of the
neighboring molecule allowing the formation of three aryl-H· · ·F
hydrogen bonds (SI, Figure S1). Thus, in the resulting porous 2D
network, two neighboring molecules are stabilized by both antiparallel
arrangement of the branches comprising a dipole moment and the
formation of six aryl-H· · ·F hydrogen bonds, which have already been
reported for monolayers consisting of self- assembled fluorinated
phthalocyanines.14 The crucial role of this intermolecular stabilizing
interaction was further emphasized by control experiments with the
structurally related star-shaped molecule lacking the F atoms (see 11
in Supprorting Information SI-1), which failed to form self-assembled
monolayers under similar conditions.
Acknowledgment. The authors acknowledge the support with
a postdoctoral position for L. Shu by the Center for Functional
Nanostructures (CFN) of the Deutsche Forschungsgemeinschaft
(DFG) within project C3.
Supporting Information Available: Synthetic protocols and ana-
lytical data of all mentioned molecules, the additional STM images
and the molecular packing model are available This material is available
References
(1) (a) De Feyter, S.; De Schryver, F. C. J. Phys. Chem. B 2005, 109, 4290–
4302. (b) Rabe, J. P. Curr. Opin. Colloid Interface Sci. 1998, 3, 27–31. (c)
Cyr, D. M.; Venkataraman, B.; Flynn, G. W. Chem. Mater. 1996, 8, 1600–
1615.
(2) (a) Theobald, J. A.; Oxtoby, N. S.; Champness, N. R.; Beton, P. H.; Dennis,
T. J. S. Langmuir 2005, 21, 2038–2041. (b) Barth, J. V.; Costantini, G.;
Kern, K. Nature 2005, 437, 671–679.
(3) (a) Griessl, S.; Lackinger, M.; Edelwirth, M.; Hietschold, M.; Heckl, W. M.
Single Mol. 2002, 3, 25–31. (b) Theobald, J. A.; Oxtoby, N. S.; Phillips,
M. A.; Champness, N. R.; Beton, P. H. Nature 2003, 424, 1029–1031. (c)
Lu, J.; Lei, S. B.; Zeng, Q. D.; Kang, S. Z.; Wang, C.; Wan, L. J.; Bai,
C. L. J. Phys. Chem. B 2004, 108, 5161–5165. (d) Sto¨hr, M.; Wahl, M.;
Galka, C. H.; Riehm, T.; Jung, T. A.; Gade, L. H. Angew. Chem., Int. Ed.
2005, 44, 1–6. (e) Pawin, G.; Wong, K. L.; Kwon, K.; Bartels, L. Science
2006, 313, 961–962. (f) Ishikawa, Y.; Ohira, A.; Sakata, M.; Hirayama,
C.; Kunitake, M. Chem. Commun. 2002, 2652–2653. (g) Griessl, S. J. H.;
Lackinger, M.; Jamitzky, F.; Markert, T.; Hietschold, M.; Heckl, W. M. J.
Phys. Chem. B 2004, 108, 11556–11560. (h) Zhou, H.; Dang, H.; Yi, J.;
Nanci, A.; Rochefort, A.; Wuest, J. D. J. Am. Chem. Soc. 2007, 129, 13774–
13775. (i) Tao, F.; Bernasek, S. L. J. Am. Chem. Soc. 2005, 127, 12750–
12751.
(4) (a) Stepanow, S.; Lingenfelder, M.; Dmitriev, A.; Spillmann, H.; Delvigne,
E.; Lin, N.; Deng, X.; Cai, C.; Barth, J. V.; Kern, K. Nat. Mater. 2004, 3,
229–233. (b) Stepanow, S.; Lin, N.; Payer, D.; Schlickum, U.; Klappen-
berger, F.; Zoppellaro, G.; Ruben, M.; Brune, H.; Barth, J. V.; Kern, K.
Angew. Chem., Int. Ed. 2007, 46, 710–713.
(5) (a) Tahara, K.; Furukawa, S.; Uji-I, H.; Uchino, T.; Ichikawa, T.; Zhang,
J.; Mamdouh, W.; Sonoda, M.; De Schryver, F. C.; De Feyter, S.; Tobe,
Y. J. Am. Chem. Soc. 2006, 128, 16613–16625. (b) Schull, G.; Douillard,
L.; Fiorini-Debuisschert, C.; Charra, F. Nano. Lett. 2006, 6, 1360–1363.
(c) Liu, Y.; Lei, S.; Yin, S.; Xu, S.; Zheng, Q.; Zeng, Q.; Wang, C.; Wan,
L.; Bai, C. J. Phys. Chem. B 2002, 106, 12569–12574.
Closer inspection of the structure reveals the branches of six
interacting molecules defining a void with a diameter of about 2.0
nm. The six branches surrounding the void are arranged either
clockwise or anticlockwise, defining a chiral cavity in different domains
(Figure 1c,d). Two images containing the domain boundary are shown
in SI-2 (Figure S2a,b). Driven by the close-packed arrangement of
the molecules within a domain, all voids have the same chirality,
yielding in a chiral separation arising from the self-assembly of 1, as
observed for other systems.15 Alteration of current and bias allowed
the inspection of the underlying substrate lattice, revealing an angle
of 4.0 ( 2 or -4.0 ( 2° between the unit cell vector a and the main
symmetry axis of the HOPG (SI, Figure S2c,d). While the intermo-
lecular interactions result in a 2D porous structure, the molecule-graphite
interaction is assumed to dictate its orientation.
(6) (a) Cockroft, S. L.; Perkins, J.; Zonta, C.; Adams, H.; Spey, S. E.; Low,
C. M. R.; Vinter, J. G.; Lawson, K. R.; Urch, C. J.; Hunter, C. A. Org.
Biomol. Chem. 2007, 5, 1062–1080. (b) Meyer, E. A.; Castellano, R. K.;
Diederich, F. Angew. Chem., Int. Ed. 2003, 42, 1210–1250.
(7) (a) Shu, L.; Mayor, M. Chem. Commun. 2006, 4134–4136. (b) Gdaniec,
M.; Jankowski, W.; Milewska, M. J.; Połooˇski, T. Angew. Chem., Int. Ed.
2003, 42, 3903–3906. (c) Ponzini, F.; Zagha, R.; Hardcastle, K.; Siegel,
J. S. Angew. Chem., Int. Ed. 2000, 39, 2323–2325.
(8) (a) Feast, W. J.; Lo¨venich, P. W.; Puschmann, H.; Taliani, C. Chem.
Commun. 2001, 505–506. (b) Vangala, V. R.; Nangia, A.; Lynch, V. M.
Chem. Commun. 2002, 1304–1305. (c) Watt, S. W.; Dai, C.; Scott, A. J.;
Burke, J. M.; Thomas, R.; Collings, J. C.; Viney, C.; Clegg, W.; Marder,
T. B. Angew. Chem., Int. Ed. 2004, 43, 3061–3063.
To further investigate the potential of these rigid rod branches
to stabilize molecules on surfaces, the angulate rod 2 lacking one
branch compared with 1 has been investigated. In similarity to 1,
compound 2 in phenyloctane also forms stable and homogeneous
monolayers on graphite. The high-resolution image (Figure 2b)
displays the paired arrangement of two intercalating molecules 2.
The antiparallel arrangement of their branches results in opposite
directions of their dipole moments but also maximizes the number
of intermolecular aryl-H· · ·F hydrogen bonds to six. These dimers
are arranged in infinite one-dimensional stripes stabilized by four
hydrogen bonds between each set of two dimers and opening a
quadrangle void with dimension of 1.3 nm × 0.6 nm. The entire
surface is covered by parallel stripes which are staggered with
respect to each other to enable the formation of interstripe
aryl-H· · ·F hydrogen bonds. The parameters of a unit cell were
determined to be a ) 2.3 ( 0.2 nm, b ) 2.4 ( 0.2 nm, R ) 92 (
2°. In analogy to 1, also 2 forms entire domains comprising
exclusively voids of the same 2D chirality. An angle of 5.5 ( 2 or
(9) Coates, G. W.; Dunn, A. R.; Henling, L. M.; Ziller, J. W.; Lobkovsky,
E. B.; Grubbs, R. H. J. Am. Chem. Soc. 1998, 120, 3641–3649.
(10) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Chem. Commun. 2007,
1003–1022.
(11) Gorske, B. C.; Blackwell, H. E. J. Am. Chem. Soc. 2006, 128, 14378–14387.
(12) Elbing, M.; Ochs, R.; Ko¨ntopp, M.; Fischer, M.; von Ha¨nisch, C.; Evers, F.; Weber,
H. B.; Mayor, M. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8815–8820.
(13) Shu, L.; Mu, Z.; Fuchs, H.; Chi, L.; Mayor, M. Chem. Commun. 2006,
1862–1863.
(14) (a) Oison, V.; Koudia, M.; Abel, M.; Porte, L. Phys. ReV. B 2007, 75,
035428.
(15) Ernst, K.-H. Top. Curr. Chem. 2006, 265, 209–252.
JA801925Q
9
J. AM. CHEM. SOC. VOL. 130, NO. 33, 2008 10841