C. V. Ramana et al. / Tetrahedron Letters 47 (2006) 4061–4064
4063
3. (a) Keukeleire, D. D.; Taeye, L. D.; Verzele, M. Tetra-
hedron 1976, 32, 2923–2925; (b) Gelin, S.; Pollet, P.
Tettahedron Lett. 1980, 21, 4491–4494; (c) Detsi, A.;
Afantitis, A.; Athanasellis, G.; Markopoulos, J.; Igglessi-
Markopoulou, O.; Skylaris, C.-K. Eur. J. Org. Chem.
2003, 4593–4600.
4. (a) Kohl, H.; Bhat, S. V.; Patell, J. R. Tetrahedron Lett.
1974, 12, 983–986; (b) Boekcman, R. K., Jr.; Weidner, C.
H.; Perni, R. B.; Napier, J. J. J. Am. Chem. Soc. 1989, 111,
8036–8037; (c) Paquette, L. A.; Macdonald, D.; Anderson,
L. G.; Wright, J. J. Am. Chem. Soc. 1989, 111, 8037–8039;
(d) Jones, R. C. F.; Begley, M. J.; Peterson, G. E.;
Sumaria, S. J. Chem. Soc., Perkin Trans. 1 1990, 1959–
1968; (e) Poncet, J.; Jouin, P.; Castro, B.; Nicolas, L.;
Boutar, M.; Gaudemer, A. J. Chem. Soc., Perkin Trans. 1
1990, 611–616; (f) Ley, S. V.; Smith, S. C.; Woodward, P.
R. Tetrahedron 1992, 48, 1145–1174; (g) Jones, R. C. F.;
Bhalay, G.; Carter, P. A.; Duller, K. A. M.; Vulto, S. I. E.
J. Chem. Soc., Perkin Trans. 1 1994, 1, 2513–2515; (h)
Petroliagi, M.; Igglessi-Markopoulou, O. J. Chem. Soc.,
Perkin Trans. 1 1997, 23, 3543–3548; (i) Andrews, M. D.;
Brewster, A. G.; Crapnell, K. M.; Ibbett, A. J.; Jones, T.;
Moloney, M. G.; Prout, K.; Watkin, D. J. Chem. Soc.,
Perkin Trans. 1 1998, 223–235; (j) Matthews, J.; Rivero, R.
A. J. Org. Chem. 1998, 63, 4808–4810; (k) Dixon, D. J.;
Ley, S. V.; Gracza, T.; Szolcsanyi, P. J. Chem. Soc., Perkin
Trans. 1 1999, 839–841; (l) Yuki, K.; Shindo, M.;
Shishido, K. Tetrahedron Lett. 2001, 42, 2517–2519; (m)
Detsi, A.; Afantitis, A.; Athanasellis, G.; Igglessi-Marko-
poulou, O.; Markopoulos, J.; Skylaris, C.-K. Eur. J. Org.
Chem. 2003, 4593–4600; (n) Paintner, F. F.; Metz, M.;
Bauschke, G. Synlett 2003, 627–630; (o) Schobert, R.;
Jagusch, C. Tetrahedron 2005, 61, 2301–2307.
Figure 2. ORTEP structure of 13.
Table 1. Attempted conditions for the epoxidation of 13
Entry
Reagents and conditions
Result
1
2
3
4
5
6
7
MCPBA, CH2Cl2, ꢁ78 °C
MCPBA, CH2Cl2, rt
No reaction
Decomposition
Decomposition
Decomposition
Decomposition
Decomposition
Decomposition
OxoneÒ, acetone, EtOAc, rt
H2O2, NaHCO3, THF–water
H2O2, NaHCO3, CHCl3–water
H2O2, NaHCO3, PhCN–methanol
Diisopropyl tartarate, Ti(OiPr)4,
t
THF, ꢁ78 °C, BuOOH
8
PhCO2Ag, I2, Ph, reflux
No reaction
crystal X-ray structural analysis of 13 confirmed the
structure (Fig. 2).10
However, the final endeavor to install the epoxide on the
C16–C17 olefin, a reaction which looked to be straight
forward, turned out to be difficult. Many reagents
(Table 1) were utilized but the substrate 13 was unstable
to the reaction conditions and gave intractable mixtures
of compounds from which no pure product could be
isolated in an appreciable yield. This study showed that
the epoxide function would have to be installed by an
another synthetic protocol because, under reaction
conditions needed to epoxidize the olefin, the acyl-
tetramic acid group rapidly decomposed,11 at least in
our hands.
5. Lacey, R. N. J. Chem. Soc. 1954, 850–854.
6. Green, R.; Taylor, P. J. M.; Bull, S. D.; James, T. J.;
Mohan, M. F.; Merritt, A. T. Teterahedron: Asymmetry
2003, 14, 2619–2623.
7. Winkler, J. D.; Hey, J. P.; Hannon, F. J. Heterocycles
1987, 25, 55–60.
25
8. Spectral data of compound 6: ½aꢀD 15:3 (c 1.1, CHCl3). IR
(CHCl3): t 3340, 3019, 2931, 1727, 1973, 1611, 1511, 1217,
1
767 cmꢁ1. H NMR (500 MHz, CDCl3) d: 1.22–1.46 (m,
4H), 2.03 (d, J = 12.0 Hz, 1H), 2.04 (d, J = 12 Hz, 1H)
2.22 (ddd, J = 5.2, 9.3, 17.3 Hz, 1H), 2.40 (ddd, J = 5.9,
9.5, 17.3 Hz, 1H), 2.71 (dd, J = 10.0, 14.2 Hz, 1H), 3.18
(m, 2H), 3.35 (d, J = 14.5 Hz, 1H), 3.80 (s, 3H), 4.57 (dd,
J = 5.8, 14.2 Hz, 1H), 4.62 (dd, J = 5.5, 14.2 Hz, 1H), 4.67
(m, 1H), 5.45 (dt, J = 5.3, 15.6 Hz, 1H), 5.59 (dt, J = 6.9,
15.6 Hz, 1H), 6.75 (d, J = 8.2 Hz, 2H), 6.94 (d, J = 8.2 Hz,
2H). 13C NMR (125 MHz, CDCl3) d: 21.7 (t), 27.5 (t), 31.0
(t), 36.9 (t), 43.6 (t), 49.6 (t), 52.4 (q), 53.3 (d), 67.4 (t),
115.9 (d), 127 (d), 127.5 (s), 129.9 (d), 134.4 (d), 156.5 (s),
164.2 (s), 171.8 (s), 206.4 (s) ppm. ESI-MS: m/z 360.15
(51%, [M+H]+), 382.12 (100%, [M+Na]+). Anal. Calcd
for C20H25NO5: C, 66.83; H, 7.01; N, 3.90. Found: C,
66.66; H, 7.13; N, 3.72.
To conclude, our synthetic strategy to build the macro-
cyclic structure and the acyltetramic acid of macrocidins
was successful, although the macrocyclic intermediate
13 was found to be unstable to epoxidation conditions.
Acknowledgement
25
Financial support by CSIR (New Delhi) in the form of a
research fellowship to M.A.M. is gratefully acknowledged.
9. Spectral data of compound 13: ½aꢀD ꢁ 36:2 (c 1.2, CHCl3).
IR (CHCl3): t 3400, 3019, 2932, 1708, 1613, 1511, 1461,
1433, 1246, 1215, 1034, 757 cmꢁ1 1H NMR (500 MHz,
.
CDCl3) d: 1.04–1.13 (m, 2H), 1.15–1.23 (m, 1H), 1.26–1.34
(m, 1H), 1.89–1.94 (m, 2H), 2.02–2.07 (m, 1H), 2.97 (dd,
J = 4.1, 14.4 Hz, 1H), 3.04 (dd, J = 2.7, 14.4 Hz, 1H), 3.20
(dt, J = 6.7, 11.6 Hz, 1H), 3.79 (s, 3H), 4.14 (d,
J = 14.8 Hz, 1H), 4.55–4.60 (m, 3H), 5.27–5.42 (m, 1H),
5.34 (d, J = 14.8 Hz, 1H), 5.52 (dt, J = 7.4, 15.6 Hz, 1H),
6.68 (br s, 2H), 6.76–6.78 (m, 1H), 6.87 (br d, J = 8.0 Hz,
2H), 6.95 (br s, 1H), 7.21 (br d, J = 8.0 Hz, 2H). 13C NMR
(125 MHz, CDCl3) d: 27.5 (t), 28.6 (t), 32.1 (t), 32.2 (t), 32.4
(t), 42.6 (t), 55.2 (q), 64.1 (d), 66.8 (t), 101.5 (s), 114.3 (d),
References and notes
1. Graupner, P. R.; Carr, A.; Clancy, E.; Gilbert, J.;
Gerwick, B. C.; Bailey, K. L.; Derby, J.-A. J. Nat. Prod.
2003, 66, 1558–1561.
2. (a) Gossauer, A. Prog. Chem. Org. Nat. Prod. 2003, 86; (b)
Rubinov, D. B.; Rubinova, I. L.; Akhrem, A. A. Chem.
Rev. 1999, 99, 1047–1065; (c) Royles, B. J. L. Chem. Rev.
1995, 95, 1981–2001.