LETTER
Synthesis of Novel Bicyclic Ketals of Galacturonic Acid
1069
3787. (d) Böhm, M.; Lorthiois, E.; Meyyappan, M.; Vasella,
A. Helv. Chim. Acta 2003, 86, 3818. (e)Moreno-Vargas, A.
J.; Schütz, C.; Scopelliti, R.; Vogel, P. J. Org. Chem. 2003,
68, 5632. (f) Böhm, M.; Vasella, A. Helv. Chim. Acta 2004,
87, 2566. (g) Blériot, Y.; Vadivel, S. K.; Herrera, A. J.;
Greig, I. R.; Kirby, A. J.; Sinaÿ, P. Tetrahedron 2004, 60,
6813. (h) Kapferer, P.; Vasella, A. Helv. Chim. Acta 2004,
87, 2764. (i) Buser, S.; Vasella, A. Helv. Chim. Acta 2005,
88, 3151.
In summary, we have developed an efficient synthetic
route to the bicyclic ketal 1 of galacturonic acid in 16 steps
with an overall yield of 15% starting from b-D-galactose
pentaacetate. The synthetic route offers variability and
should be suitable for the preparation of a library of poten-
tial b-glycosidase inhibitors.
Acknowledgment
(12) (a) Wolfrom, M. L.; Thompson, A. Methods Carbohyd.
Chem. 1963, 2, 211. (b) Konstantinovic, S.; Dimitrijevic,
B.; Radulovic, V. Indian J. Chem., Sect. B: Org. Chem. Incl.
Med. Chem. 2002, 41, 598.
(13) Liu, M.-Z.; Fan, H.-N.; Guo, Z.-W.; Hui, Y.-Z. Carbohydr.
Res. 1996, 290, 233.
We thank the Schering AG, Berlin and the Fonds der Chemischen
Industrie for the generous financial support of this work. A.E.
thanks E. Ottow and R. Metternich (both Schering AG) for their en-
couragement and A. Vasella (ETH Zürich) for advice.
(14) Ohlsson, J.; Magnusson, G. Carbohydr. Res. 2000, 329, 49.
(15) Wong, C.-H.; Moris-Varas, F.; Hung, S.-C.; Marron, T. G.;
Lin, C.-C.; Gong, K. W.; Weitz-Schmidt, G. J. Am. Chem.
Soc. 1997, 119, 8152.
(16) (a) Gigg, J.; Gigg, R. J. Chem. Soc. 1966, 82. (b) Koeman,
F. A. W.; Kamerling, J. P.; Vliegenthart, J. F. G.
Tetrahedron 1993, 49, 5291.
(17) Plettenburg, O.; Bodmer-Narkevitch, V.; Wong, C.-H. J.
Org. Chem. 2002, 67, 4559.
References and Notes
(1) Current address: Polyphor AG, Gewerbestr. 14, 4123
Allschwil (BL), Switzerland.
(2) (a) Asano, N. Glycobiology 2003, 13, 93R. (b) Houston, T.
A.; Blanchfield, J. T. Mini-Rev. Med. Chem. 2003, 3, 669.
(c) Chang, C.-F.; Ho, C.-W.; Wu, C.-Y.; Chao, T.-A.; Wong,
C.-H.; Lin, C.-H. Chem. Biol. 2004, 11, 1301. (d) Pearson,
M. S. M.; Mathé-Allainmat, M.; Fargeas, V.; Lebreton, J.
Eur. J. Org. Chem. 2005, 2159.
(18) RajanBabu, T. V.; Fukunaga, T.; Reddy, G. S. J. Am. Chem.
Soc. 1989, 111, 1759.
(3) (a) Puls, W.; Keup, U.; Krause, H. P.; Thomas, G.;
Hoffmeister, F. Naturwissenschaften 1977, 64, 536.
(b) Mitrakou, A.; Tountas, N.; Raptis, A. E.; Bauer, R. J.;
Schulz, H.; Raptis, S. A. Diabetic Med. 1998, 15, 657.
(c) Sels, J.-P. J. E.; Huijberts, M. S. P.; Wolffenbuttel, B. H.
R. Expert Opin. Pharmaco. 1999, 1, 149. (d) Scott, L. J.;
Spencer, C. M. Drugs 2000, 59, 521. (e) Drent, M. L.;
Tollefsen, A. T. M.; van Heusden, F. H. J. A.; Hoenderdos,
E. B. M.; Jonker, J. J. C.; van der Veen, E. A. Diabetes Nutr.
Metab. 2002, 15, 152. (f) Beck, R. PharmaChem 2003, 2,
14.
(4) (a) Laver, W. G.; Bischofberger, N.; Webster, R. G. Sci. Am.
1999, 280, 78. (b) Lew, W.; Chen, X.; Kim, C. U. Curr.
Med. Chem. 2000, 7, 663.
(5) Zitzmann, N.; Mehta, A. S.; Carrouée, S.; Butters, T. D.;
Platt, F. M.; McCauley, J.; Blumberg, B. S.; Dwek, R. A.;
Block, T. M. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 11878.
(6) Robina, I.; Moreno-Vargas, A. J.; Carmona, A. T.; Vogel, P.
Curr. Drug Metab. 2004, 5, 329.
(7) Nishimura, Y. Curr. Top. Med. Chem. 2003, 3, 575.
(8) (a) Douglas, K. T. Chem. Ind. 1983, 311. (b) Schramm, V.
L. Annu. Rev. Biochem. 1998, 67, 693. (c) Schröder, P. N.;
Giannis, A. Angew. Chem. Int. Ed. 1999, 38, 1379; Angew.
Chem. 1999, 111, 1471. (d) Lillelund, V. H.; Jensen, H. H.;
Liang, X.; Bols, M. Chem. Rev. 2002, 102, 515.
(9) (a) Heightman, T. D.; Vasella, A. T. Angew. Chem. Int. Ed.
1999, 38, 750; Angew. Chem. 1999, 111, 794. (b) Zechel,
D. L.; Boraston, A. B.; Gloster, T.; Boraston, C. M.;
Macdonald, J. M.; Tilbrook, D. M. G.; Stick, R. V.; Davies,
G. J. J. Am. Chem. Soc. 2003, 125, 14313.
(10) (a) Sinnott, M. L. Chem. Rev. 1990, 90, 1171. (b) Zechel,
D. L.; Withers, S. G. Acc. Chem. Res. 2000, 33, 11.
(c) Vasella, A.; Davies, G. J.; Böhm, M. Curr. Opin. Chem.
Biol. 2002, 6, 619. (d) Davies, G. J.; Ducros, V. M.-A.;
Varrot, A.; Zechel, D. L. Biochem. Soc. Trans. 2003, 31,
523.
(11) (a) Lorthiois, E.; Meyyappan, M.; Vasella, A. Chem.
Commun. 2000, 1829. (b) Fuentes, J.; Gasch, C.; Olano, D.;
Pradera, M. A.; Repetto, G.; Sayago, F. J. Tetrahedron:
Asymmetry 2002, 13, 1743. (c) Böhm, M.; Lorthiois, E.;
Meyyappan, M.; Vasella, A. Helv. Chim. Acta 2003, 86,
(19) Preparation of (2R,3S,4R,5S)-4,5-Di-O-benzyl-1,3-O-
benzylidenehept-6-ene-1,2,3,4,5-pentaol.
A suspension of 4.79 g (13.4 mmol, 4.0 equiv) methyltri-
phenylphosphonium bromide (purchased and stored in
vacuo over P2O5) in 70 mL dry THF was cooled to –30 °C
and 7.9 mL of a solution of n-BuLi in hexane (1.6 M, 12.7
mmol, 3.8 equiv) were added dropwise with a syringe. The
reaction mixture turned to a clear yellow solution within 20
min. At the same temperature a solution of 1.50 g (3.35
mmol, 1.0 equiv) lactol 5 in 30 mL dry THF was added
dropwise with a syringe. The syringe was washed with
2 × 2 mL THF. The reaction mixture was stirred for 24 h
while the temperature gradually came to r.t. The resulting
orange suspension was quenched with 100 mL H2O and the
layers were seperated. The aqueous layer was neutralised
with 100 mL sat. NH4Cl and extracted with 3 × 80 mL
MTBE. The combined organic layers were washed with
2 × 50 mL sat. NH4Cl, 50 mL H2O and 50 mL brine, dried
over MgSO4 and the solvents were evaporated. The
remaining sticky yellow oil was purified by flash column
chromatography (100 g silica, 3:1 → 2:1 pentane–MTBE)
giving 1.35 g (90%) of the corresponding alkene. The
colourless oil solidified on standing at r.t. Rf = 0.19
(n-hexane–MTBE, 3:1); mp 76 °C; [a]D20 +51.8 (c 3.29,
CHCl3). IR (KBr): 578 (w), 598 (w), 698 (vs), 749 (s), 811
(w), 844 (w), 886 (w), 926 (m), 951 (w), 1028 (s), 1089 (vs),
1216 (s), 1308 (m), 1340 (m), 1396 (s), 1454 (s), 1496 (m),
2866 (m), 3031 (m), 3064 (m), 3472 (br m). 1H NMR (400
MHz, CDCl3): d = 2.86 (d, 1 H, J = 10.7 Hz, OH), 3.76 (dd,
1 H, J = 2.4, 8.7 Hz, 4-H), 3.84 (br d, 1 H, J = 10.1 Hz, 2-H),
4.05 (dd, 1 H, J = 1.1, 11.8 Hz, 5-H), 4.08 (dd, 1 H, J = 2.2,
6.8 Hz, 1-Ha), 4.19 (dd, 1 H, J = 1.0, 8.7 Hz, 3-H), 4.24 (dd,
1 H, J = 2.0, 11.9 Hz, 1-Hb), 4.34 (d, 1 H, J = 12.1 Hz,
PhCH2), 4.69 (d, 1 H, J = 12.1 Hz, PhCH2), 4.70 (d, 1 H,
J = 10.9 Hz, PhCH2), 4.78 (d, 1 H, J = 10.9 Hz, PhCH2),
5.27–5.38 (m, 2 H, 7-H2), 5.40 (s, 1 H, PhCH), 5.96 (ddd, 1
H, J = 7.5, 10.2, 17.5 Hz, 6-H), 7.12–7.40 (m, 15 H, Harom).
13C NMR (100 MHz, CDCl3): d = 63.4 (C-6), 70.6 (PhCH2),
72.8 (C-7), 75.6 (PhCH2), 77.8 (C-5), 78.3 (C-3), 79.9 (C-4),
101.2 (PhCH), 118.6 (C-1), 126.0 (2 C), 127.7, 127.9, 128.2
(2 C), 128.3 (2 C), 2 × 128.4 (4 C), 128.6 (2 C), 129.0
Synlett 2006, No. 7, 1067–1070 © Thieme Stuttgart · New York