C O M M U N I C A T I O N S
in the presence of a half amount of AdCA (Figure 3c). From the
variable-temperature NMR measurement, the conformational
exchange rate constants of 6-PEG600acid-HyCiO-â-CD and
6-PEG3000acid-HyCiO-â-CD were estimated to be 382 s-1 and
177 s-1 at 30 °C, respectively (see Supporting Information). It was
revealed that the conformational exchange of 6-PEG600acid-
HyCiO-â-CD was more than twice as fast as that of 6-PEG3000acid-
HyCiO-â-CD. These results indicate that the rate of the self-
threading complex formation depends on the length of the PEG
chain in the substituent.
This is the first report on the self-threading complex of polymer-
substituted CD, and the observation of the difference of self-
threading behavior, depending on polymer chain length. Moreover,
there is a possibility that this self-threading of polymer-substituted
CD leads to novel properties of polymer. The detailed self-threading
behaviors of these complexes are now under investigation.
Figure 2. Circular dichroism spectra of 6-PEG600acid-HyCiO-â-CD in
aqueous solutions (solid line) and in the presence of an equal amount of
AdCA (dashed line).
Acknowledgment. The authors express their special thanks for
the Center of Excellence (21COE) program “Creation of Integrated
EcoChemistry” of Osaka University.
Supporting Information Available: Synthesis and characterization
of 6-AmHyCiO-â-CD, 6-PEG600acid-HyCiO-â-CD, and 6-PEG3000-
acid-HyCiO-â-CD. Variable-temperature measurement. This material
References
(1) (a) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem.,
Int. Ed. 2000, 39, 3348-3391. (b) Badjic, J. D.; Nelson, A.; Cantrill, S.
J.; Turnbull, W. B.; Stoddart, J. F. Acc. Chem. Res. 2005, 38, 723-732.
(c) Kelly, T. R. Acc. Chem. Res. 2001, 34, 514-522. (e) Collin, J.-P.;
Dietrich-Buchecker, C.; Gavina, P.; Jimenez-Molero, M. C.; Sauvage,
J.-P. Acc. Chem. Res. 2001, 34, 477-487. (f) Harada, A. Acc. Chem.
Res. 2001, 34, 456-464.
(2) (a) Liu, Y.; Flood, A. H.; Stoddart, J. F. J. Am. Chem. Soc. 2004, 126,
9150-9151. (b) Liu, Y.; Flood, A. H.; Moskowitz, R. M.; Stoddart, J. F.
Chem.sEur. J. 2005, 11, 369-385. (c) Hiratani, K.; Kaneyama, M.;
Nagawa, Y.; Koyama, E.; Kanesato, M. J. Am. Chem. Soc. 2004, 126,
13568-13569. (d) Park, J. W.; Lee, S. Y.; Song, H. J.; Park, K. K. J.
Org. Chem. 2005, 70, 9505-9513. (e) Harada, A.; Kawaguchi, Y.;
Hoshino, T. J. Inclusion Phenom. Macrocyclic Chem. 2001, 41, 115-
121. (f) Hoshino, T.; Miyauchi, M.; Kawaguchi, Y.; Yamaguchi, H.;
Harada, A. J. Am. Chem. Soc. 2000, 122, 9876-9877. (g) Miyauchi, M.;
Harada, A. J. Am. Chem. Soc. 2004, 126, 11418-11419. (h) Miyauchi,
M.; Hoshino, T.; Yamaguchi, H.; Kamitori, S.; Harada, A. J. Am. Chem.
Soc. 2005, 127, 2034-2035. (i) Miyauchi, M.; Takashima, Y.; Yamaguchi,
H.; Harada, A. J. Am. Chem. Soc. 2005, 127, 2984-2989.
(3) (a) Ueno, A.; Kuwabara, T.; Nakamura, A.; Toda, F. Nature 1992, 356,
136-137. (b) Ikunaga, T.; Ikeda, H.; Ueno, A. Chem.sEur. J. 1999, 356,
136-137. (c) Bugler, J.; Engbersen, J. F. J.; Reinhoudt, D. N. J. Org.
Chem. 1998, 63, 5339-5344. (d) Ikeda, H.; Nakamura, M.; Ise, N.;
Oguma, N.; Nakamura, A.; Ikeda, T.; Toda, F.; Ueno, A. J. Am. Chem.
Soc. 1996, 118, 10980-10988. (e) Corradini, R.; Dossena, A.; Galaverna,
G.; Marchelli, R.; Panagia, A.; Sartor, G. J. Org. Chem. 1997, 62, 6283-
6289.
Figure 3. NMR spectra of the aromatic protons of the substituted CDs
and conformational exchange rates in the presence of a half amount of AdCA
at 30 °C.
(4) (a) Easton, C. J.; Lincoln S. F. Modified Cyclodextrins; Imperial College
Press: London, 1999. (b) D’Souza, V. T.; Bender, M. L. Acc. Chem. Res.
1987, 20, 146-152. (c) Breslow, R.; Dong, S. D. Chem. ReV. 1998, 98,
1997-2012.
and Uedaira,7 the substituent is included in its CD cavity and is
parallel to the axis of CD. On the contrary, the circular dichroism
spectrum of 6-PEG600acid-HyCiO-â-CD with AdCA showed an
induced negative band in the same wavelength region. According
to the theoretical treatment by Kodaka,8 the exposed substitution
part in water exists nearly parallel to its CD axis (Figure 2).
6-PEG3000acid-HyCiO-â-CD with a longer PEG chain showed
similar results to 6-PEG600acid-HyCiO-â-CD. In contrast, the
NMR spectrum in the presence of a half amount of AdCA is quite
different from that of 6-PEG600acid-HyCiO-â-CD. The signals of
the aromatic protons of 6-PEG3000acid-HyCiO-â-CD were split
(5) (a) Caliceti, P.; Salmaso, S.; Semenzato, A.; Carofiglio, T.; Fornasier,
R.; Fermeglia, M.; Ferrone, M.; Pricl, S. Bioconjugate Chem. 2003, 14,
899-908. (b) Kakuchi, T.; Narumi, A.; Miura, Y.; Matsuya, S.; Sugimoto,
N.; Satoh, T.; Kaga, H. Macromolecules 2003, 36, 3909-3913.
(6) It was found that the broad signals came from the species that participate
in conformational exchange because these signals coalesced; in contrast,
the small signals came from the species that did not participate in
conformational exchange because these signals did not coalesce in the
variable-temperature NMR measurement (see Supporting Information).
(7) Harata, K.; Uedaira, H. Bull. Chem. Soc. Jpn. 1975, 48, 375-378.
(8) Kodaka, M. J. Phys. Chem. A 1998, 102, 8101-8103.
JA061095T
9
J. AM. CHEM. SOC. VOL. 128, NO. 28, 2006 8995