C O M M U N I C A T I O N S
Table 1. Ru-Catalyzed [1,3]-Carbene Shift Using Diynes 1a
Acknowledgment. Dedicated to Professor Kyriacos C. Nicolaou
on the occasion of his 60th birthday. This work was supported by
a Grant-in-Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science and Technology, Japan, the
Nagase Science and Technology Foundation, and the Sumitomo
Foundation.
Supporting Information Available: General procedures and
characterization of new compounds are provided as a PDF file. This
References
(1) (a) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic
Molecules, 2nd ed.; University Science Books: Mill Valley, CA, 1999; p
143. (b) Do¨rwald, F. Z. Metal Carbenes in Organic Synthesis; Wiley-
VCH: Weinheim, Germany, 1999.
a Reaction conditions: substrate 1 (0.50 mmol), ethyl vinyl ether (3.0 equiv),
[RuCl2(CO)3]2 (5.0 mol %), DCE (2.5 mL), at 50 °C for 48 h. b For 72 h; 7%
of starting material was recovered.
(2) For recent reviews, see: (a) Miki, K.; Ohe, K.; Uemura, S. Chem. Lett.
2005, 34, 1068. (b) Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328.
(c) Ohe, K.; Miki, K.; Uemura, S. J. Synth. Org. Chem. Jpn. 2004, 62,
978. (d) Echavarren, A. M.; Nevado, C. Chem. Soc. ReV. 2004, 33, 431.
(3) (a) Miki, K.; Ohe, K.; Uemura, S. Tetrahedron Lett. 2003, 44, 2019. (b)
Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. For recent
examples reported by other groups, see: (c) Johansson, M. J.; Gorin, D.
J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. (d)
Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802. (e)
Prasad, B. A. B.; Yoshimoto, F. K.; Sarpong, R. J. Am. Chem. Soc. 2005,
127, 12468. (f) Soriano, E.; Ballesteros, P.; Marco-Contelles, J. Orga-
nometallics 2005, 24, 3182. (g) Fu¨rstner, A.; Hannen, P. Chem. Commun.
2004, 2546. (h) Blaszykowski, C.; Harrak, Y.; Gonc¸alves, M.-H.; Cloarec,
J.-M., Dhimane, A.-L.; Fensterbank, L.; Malacria, M. Org. Lett. 2004, 6,
3771. (i) Mamane, V.; Gress, T.; Krause, H.; Fu¨rstner, A. J. Am. Chem.
Soc. 2004, 126, 8654. (j) Harrak, Y.; Blaszykowski, C.; Bernard, M.;
Cariou, K.; Mainetti, E.; Mourie`s, V.; Dhimane, A.-L.; Fensterbank, L.;
Malacria, M. J. Am. Chem. Soc. 2004, 126, 8656. (k) Bartels, A.;
Mahrwald, R.; Mu¨ller, K. AdV. Synth. Catal. 2004, 346, 483.
(4) (a) DePinto, J. T.; McMahon, R. J. J. Am. Chem. Soc. 1993, 115, 12573.
(b) Noro, T.; Masuda, T.; Ichimura, A. S.; Koga, N.; Iwamura, H. J. Am.
Chem. Soc. 1994, 116, 6179. (c) Bowling, N. P.; Halter, R. J.; Hodges, J.
A.; Seburg, R. A.; Thomas, P. S.; Simmons, C. S.; Stanton, J. F.;
McMahon, R. J. J. Am. Chem. Soc. 2006, 128, 3291. (d) Bowling, N. P.;
McMahon, R. J. J. Org. Chem. 2006, 71, ASAP.
accelerates this isomerization and improves the yields.14 Selected
results are summarized in Table 1. The reactions of 1a, dibenzoate
1c, and dipivalate 1d proceeded smoothly to afford the correspond-
ing products 2a, 2c, and 2d in good yields, respectively. Dicar-
boxylate 1e was isomerized to afford the corresponding product
2e in 89% yield with 1e (7%) recovered. Under the optimized
reaction conditions, the reaction of 1b smoothly proceeded to afford
2b in 84% yield. Electron-withdrawing substituents on the phenyl
rings accelerated the reaction to afford the corresponding products
in excellent yields, while diyne 1i containing an electron-donating
methoxy group gave 2i in a low yield.
When the reaction of unsymmetrical diyne 1j bearing both tert-
iary and secondary propargyl acetate moieties was carried out under
the identical conditions, (E)-2j was obtained as a major product
(eq 3).15 Since both tertiary and secondary propargyl acetates can
(5) Padwa, A.; Austin, D. J.; Gareau, Y.; Kassir, J. M.; Xu, S. L. J. Am.
Chem. Soc. 1993, 115, 2637.
(6) Takeda, T.; Ozaki, M.; Kuroi, S.; Tsubouchi, A. J. Org. Chem. 2005, 70,
4233.
(7) Barluenga, J.; de la Ru´a, R. B.; de Sa´a, D.; Ballesteros, A.; Toma´s, M.
Angew. Chem., Int. Ed. 2005, 44, 4981.
(8) A [1,1.5] shift for Re and Mn carbene complexes was defined as different
metallotropic shifts. See [Re]: (a) Casey, C. P.; Dzwiniel, T. L.; Kraft,
S.; Guzei, I. A. Organometallics 2003, 22, 3915. (b) Casey, C. P.;
Dzwiniel, T. L. Organometallics 2003, 22, 5285. (c) Ortin, Y.; Sournia-
Saquet, A.; Lugan, N.; Mathieu, R. Chem. Commun. 2003, 1060. [Mn]:
(d) Casey, C. P.; Kraft, S.; Powell, D. R. J. Am. Chem. Soc. 2000, 122,
3771. (e) Casey, C. P.; Kraft, S.; Powell, D. R. Organometallics 2001,
20, 2651. (f) Casey, C. P.; Kraft, S.; Kavana, M. Organometallics 2001,
20, 3795. (g) Casey, C. P.; Kraft, S.; Powell, D. R. J. Am. Chem. Soc.
2002, 124, 2584.
(9) For catalytic metallotropic [1,3] shift using Grubbs’ catalysts, see: (a)
Kim, M.; Miller, R. L.; Lee, D. J. Am. Chem. Soc. 2005, 127, 12818. (b)
Kim, M.; Lee, D. J. Am. Chem. Soc. 2005, 127, 18024. (c) van Otterlo,
W. A. L.; Ngidi, E. L.; de Koning, C. B.; Fernandes, M. A. Tetrahedron
Lett. 2004, 45, 659.
generate carbene complexes, this result shows that the tertiary
propargyl acetate preferentially generates carbene complex, followed
by carbene migration and migratory insertion at the secondary
propargyl acetate moiety.
The isomerization of the diyne 1k bearing primary propargyl
acetate moieties did not occur at all (eq 4). This is consistent with
no reaction of primary propargyl acetate with the ruthenium
complex.3b On the other hand, the reaction of 1l under the same
conditions gave isomerization product 2l (eq 5). The reaction of 1l
(10) The reactions of 1a with 5 mol % of PtCl2 or AuCl(PPh3)/AgSbF6, which
is well-known as one of the most excellent catalysts for catalytic carbene
transfer reactions, also gave the corresponding product 2a in 67 and 47%
yields, respectively.
(11) At present, it is not clear why the yield is increased by the addition of
styrene.
(12) The unsymmetrical structure of 2b could exclude a dicarbene complex D
generated from the 1:2 complexation of 1b and ruthenium complexes.
reveals that the generation of carbene complex took place at the
tertiary propargyl acetate moiety with migration of the carbene
center to give the isomerized product 2l in good yield.
In conclusion, we have demonstrated the ruthenium-catalyzed
isomerization of diynes and triynes by using in situ generation of
transition metal carbene complexes from propargyl carboxylates,
followed by a metallotropic [1,n]-carbene shift (n ) 3, 5) (carbene
walk) of initially generated alkynyl carbene complexes. Further
studies to find the [1,n]-carbene shift (n > 5) as well as to construct
more π-elongated materials by using this protocol are now in
progress in our laboratory.
(13) The similar intramolecular cyclization of ene-carbonyl-carbene complexes
to give furan ring has been reported. See: (a) Ghorai, B. K.; Herndon, J.
W. Organometallics 2003, 22, 3951. (b) Zhang, Y.; Herndon, J. W. J.
Org. Chem. 2002, 67, 4177.
(14) No cyclopropanated product of vinyl ether was observed in each case.
(15) The stereochemistry of product 2j was deduced by nOe experiments. See
Supporting Information.
JA0612955
9
J. AM. CHEM. SOC. VOL. 128, NO. 29, 2006 9271