900
D. M. Swanson et al. / Bioorg. Med. Chem. Lett. 16 (2006) 897–900
3. Schlicker, E.; Malinowska, B.; Kathmann, M.; Gothert,
M. Fundam. Clin. Pharmacol. 1994, 8, 128.
4. Leurs, R.; Blandina, P.; Tedford, C.; Timmerman, H.
Trends Pharmacol. Sci. 1998, 19, 177.
5. Lovenberg, T. W.; Roland, B. L.; Wilson, S. J.; Jiang, X.;
Pyati, J.; Huvar, A.; Jackson, M. R.; Erlander, M. G. Mol.
Pharmacol. 1999, 55, 1101.
6. For a review, see: Stark, H.; Arrang, J.-M.; Ligneau, X.;
Garbarg, M.; Ganellin, C. R.; Schwartz, J.-C.; Schunack,
W. Prog. Med. Chem. 2001, 38, 279.
7. Arrang, J.-M.; Garbarg, M.; Lancelot, J.-C.;
Lecomte, J.-M.; Pollard, H.; Robba, M.; Schunack, W.;
Schwartz, J.-C. Nature (London) 1987, 327, 117.
8. Roleau, A.; Garbarg, M.; Ligneau, X.; Mantion, C.;
Lavie, P.; Advenier, C.; Lecomte, J.-M.; Krause, M.;
Stark, H.; Schunack, W.; Schwartz, J.-C. J. Pharmacol.
Exp. Ther. 1997, 281, 1085.
A
rigid
three carbon
"spacing" is optimal
H
N
O
X = Br results in
X
X
small, tapered,
hydrophobic
a five fold loss in
H3 activity (vs. H)
N
1 or 2 carbons
tolerated
H
A
large,
hydrophobic
flexible
Figure 3. SAR summary.
9. Halpern, M. T. Curr. Opin. Cent. Peripher. Nerv. Syst.
Invest. Drugs 1999, 1, 524.
10. Arrang, J.-M.; Defontaine, N.; Schwartz, J.-C. Eur. J.
Pharmacol. 1988, 157, 31.
11. Kathmann, M.; Schlicker, E.; Gothert, M. Psychophar-
macology 1994, 116, 464.
12. Pompni, S. A.; Gullo, V. P.; Horan, A. C.; Patel, M. G.;
Coval, S. U.S. Patent 5,352,707, 1994.
13. Xynas, R.; Capon, R. J. Aust. J. Chem. 1989, 42, 1427.
14. Kigoshi, H.; Kanematsu, K.; Yokota, K.; Uemura, D.
Tetrahedron 2000, 56, 9063.
15. Hamann, M. T.; Scheur, P. J.; Kelly-Borges, M. J. Org.
Chem. 1993, 58, 6565.
16. Tsukamoto, S.; Kato, H.; Hirota, H.; Nobuhiro, F. J.
Org. Chem. 1996, 61, 2936.
17. Schoenfied, R.; Lumb, J.; Fantini, J.; Ganem, B. Bioorg.
Med. Chem. Lett. 2000, 10, 2679.
To explore the selectivity of 1, it was screened against a
panel of 50 monoamine and hormone receptors, ion
channels, and neurotransmitter uptake sites (CEREP,
ExpresProfile, data not shown). Aplysamine-1 (1) was
shown to be selective for the H3 receptor, possessing
low affinity (>1 lM) for the other histamine receptor
types (H1, H2, and H4). A 10-fold reduction in the bind-
ing affinities of aplysamine-1 (1) and analogs is consis-
tently observed across species (human to rat). This
speciation effect can be attributed to crucial structural
differences between the rat and human H3 receptors.24
Compounds with
a
high H3 binding affinity
(Ki < 25 nM) were further evaluated in a cell-based
model of human H3 receptor activation (Table 1,
pA2). All were found to function as competitive antago-
nists in good agreement with the observed H3 binding
affinities.
18. Sanfilippo, P. J.; Urbanski, M.; Press, J. B.; Dubinsky, B.;
Moore, J. B., Jr. J. Med. Chem. 1988, 31, 2221.
19. Dubinsky, B.; Shriver, D. A.; Sanfilippo, P. J.; Press, J. B.;
Tobia, A. J.; Rosanthale, M. E. Drug Dev. Res. 1990, 21,
277.
20. Shah, C.; McAtee, L.; Breitenbucher, J. G.; Rudolph, D.;
Xiaobing, L.; Lovenberg, T. W.; Mazur, C.; Wilson, S. J.;
Carruthers, N. I. Bioorg. Med. Chem. Lett. 2002, 12,
3309.
21. Apodaca, R.; Dvorak, C. A.; Xiao, Wei; Barbier, A. J.;
Boggs, J. D.; Wilson, S. J.; Lovenberg, T. W.; Carruthers,
N. I. J. Med. Chem. 2003, 46, 3938.
In conclusion, the marine natural product, aplysamine-1
(1), is a non-imidazole, high affinity, and selective hu-
man H3 receptor ligand synthesized in three steps from
tyramine (7). Modifications of 1 provide potent H3
receptor antagonists at the human and rat H3 receptors
(10, 13).
22. Tunoori, A. R.; Dutta, D.; Georg, G. I. Tetrahedron Lett.
1998, 39, 8751.
References and notes
23. Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.;
Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61,
3849.
24. Lovenberg, T. W.; Pyati, J.; Chang, H.; Wilson, S. J.;
Erlander, M. G. J. Pharmacol. Exp. Ther. 2000, 293,
771.
1. Arrang, J.-M.; Garbarg, M.; Schwartz, J.-C. Nature
(London) 1983, 302, 832.
2. Arrang, J.-M.; Garbarg, M.; Schwartz, J.-C. Neuroscience
1987, 23, 149.