with nitric acid was tested. Aromatic isopropyl groups can be
efficiently oxidized to the corresponding carboxylic acid group
by nitric acid.[7,13] Under aqueous nitric acid conditions, the
methyl ester group of MCA is rapidly hydrolyzed, yielding the
free cumic acid (CA) in situ. Oxidation of CA using 65% nitric
acid resulted in full conversion and 89% isolated yield (24 h
reflux, non-optimized; Figure S7). The product contained 70%
TA (Figure S7) and a single side-product was identified as 1,1-
dinitroethyl benzoic acid by using NMR, LC-MS, and IR analyses
(Figure S7).[14] It is known that 1,1-dinitroethyl benzoic acid is
also converted to TA by heating in 30% nitric acid at 1808C.[14b]
This protocol improves earlier described nitric acid oxidation
yields starting from benzene (42% yield of TA)[15] and p-cymene
(51% yield of p-toluic acid).[16] These results show that it is pos-
sible to oxidize MCA to TA in a single step with good yield.
In conclusion, we have demonstrated the applicability of
two mild catalytic steps to convert the natural monoterpenoid
MPA to the commodity chemical TA. By employing palladium-
catalyzed dehydrogenation, short and mild conditions can be
deployed, which offer advantages in terms of sustainability
and yield. Subsequently, oxidation using nitric acid is efficient
in producing TA with high yield and high purity. Our work
clearly outlines the advantages of selecting highly functional-
ized molecules as starting materials to produce commodity
materials such as TA (Figure 2). This approach anticipates the
ability of the fermentation industry to produce functionalized
terpenoid compounds at affordable prices. The fermentative
production of complex functionalized molecules such as farne-
sene, which is positioned as a jet-fuel, indicates that this is a re-
alistic scenario. Therefore, the identification of compounds that
carry appropriate functionalization and the development of
sustainable procedures to convert them into bio-based build-
ing blocks may have high potential for future applications.
Keywords: bio-based commodity chemicals · methyl perillate ·
monoterpene · natural functionalization · terephthalic acid
b) T. J. Schwartz, B. J. O’Neill, B. H. Shanks, J. A. Dumesic, ACS Catal.
[2] a) D. I. Collias, A. M. Harris, V. Nagpal, I. W. Cottrell, M. W. Schultheis, Ind.
R. E. , C. C. Chang, N. Nikbin, S. T. Feng, M. R. Wiatrowski, S. Caratzoulas,
[3] a) R. Lu, F. Lu, J. Chen, W. Yu, Q. Huang, J. Zhang, J. Xu, Angew. Chem.
Henton, D. E. US patent 2011/0087000 A1 2011.
[4] a) A. L. Meadows, K. M. Hawkins, Y. Tsegaye, E. Antipov, Y. Kim, L. Raetz,
R. H. Dahl, A. Tai, T. Mahatdejkul-Meadows, L. Xu, L. Zhao, M. S. Dasika,
A. Murarka, J. Lenihan, D. Eng, J. S. Leng, C. L. Liu, J. W. Wenger, H.
Jiang, L. Chao, P. Westfall, J. Lai, S. Ganesan, P. Jackson, R. Mans, D.
Platt, C. D. Reeves, P. R. Saija, G. Wichmann, V. F. Holmes, K. Benjamin,
Paddon, P. J. Westfall, D. J. Pitera, K. Benjamin, K. Fisher, D. McPhee,
M. D. Leavell, A. Tai, A. Main, D. Eng, D. R. Polichuk, K. H. Teoh, D. W.
Reed, T. Treynor, J. Lenihan, M. Fleck, S. Bajad, G. Dang, D. Dengrove, D.
Diola, G. Dorin, K. W. Ellens, S. Fickes, J. Galazzo, S. P. Gaucher, T. Geist-
linger, R. Henry, M. Hepp, T. Horning, T. Iqbal, H. Jiang, L. Kizer, B. Lieu,
D. Melis, N. Moss, R. Regentin, S. Secrest, H. Tsuruta, R. Vazquez, L. F.
Westblade, L. Xu, M. Yu, Y. Zhang, L. Zhao, J. Lievense, P. S. Covello, J. D.
[5] a) E. Jongedijk, K. Cankar, M. Buchhaupt, J. Schrader, H. Bouwmeester, J.
[6] Q. Wang, S. Y. Fan, H. N. C. Wong, Z. Li, B. M. Fung, R. J. Twieg, H. T.
[7] M. Colonna, C. Berti, M. Fiorini, E. Binassi, M. Mazzacurati, M. Vannini, S.
[8] E. Hatzakis, I. Opsenica, B. A. Solaja, M. Stratakis, ARKIVOC 2007, 124–
135.
[10] L. Wang, J. Xiao, Top. Curr. Chem. 2016, 374, 17.
[11] a) F. Neat¸u, G. Culica, M. Florea, V. I. Parvulescu, F. Cavani, ChemSusChem
2016, 9, 3102–3112; b) S. Lundmark, M. Kangas, B. Häggman, WO
Patent 2014/133433 A1, Sweden, 2014, p. 14; c) M. Hronec, S. Holotík, J.
Figure 2. Naturally highly functionalized starting materials from fermentative
production allow mild chemistry to produce commodity chemicals.
[14] a) A. M. Gasco, A. Distilo, G. Sorba, A. Gasco, R. Ferioli, G. Folco, M. Civel-
Acknowledgements
This research was funded by the Dutch Ministry of Economic Af-
fairs [Grant KB-13-006-042]. Source of the pictures in Figure 2
and the graphical abstract: Wageningen Food & Biobased
Research
[16] W. F. Tuley, C. S. Marvel, Org. Synth. 1947, 27, 86–88.
[17] E. N. Lamsen, S. Atsumi, Front. Microbiol. 2012, 3, 196.
[18] J. W. Frost, K. M. Draths, US patent 5616496, 1997.
[19] F. Koopman, N. Wierckx, J. H. de Winde, H. J. Ruijssenaars, Bioresour.
[20] E. Jongedijk, K. Cankar, J. Ranzijn, S. van der Krol, H. Bouwmeester, J.
Beekwilder, Yeast 2015, 32, 159–171.
Conflict of Interest
The authors declare no conflict of interest.
Received: November 7, 2017
ChemistryOpen 2018, 7, 201 –203
203
ꢀ 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim