2140
S.G. Naik et al. / Polyhedron 25 (2006) 2135–2141
vMðTÞ ¼ g2M2ðTÞ=½T ꢁ zJ0M2ðTÞꢃ
ð3Þ
port (grant SP/S1/F-01/2000). We thank the Convener, Bio-
informatics Centre of our Institute, for the database search.
where g is the gyromagnetic ratio. To account for trace
concentrations of paramagnetic impurities present in the
analytically pure sample, an additional Curie-like contribu-
tion to the magnetic susceptibility has been assumed and
the total magnetic susceptibility is given by
Appendix A. Supplementary data
Crystallographic data for 1 Æ 6H2O in the CIF format
have been deposited with the Cambridge Crystallographic
Data Center, CCDC No. 280462. Copies of this informa-
tion may be obtained free of charge from The Director,
CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax:
+44 1223 366 033; e-mail: deposit@ccdc.ac.uk or http://
this article can be found, in the online version, at
vtotðTÞ ¼ vMðT Þ þ C=T
where C is the Curie constant. The error in the fit (R) is cal-
ð4Þ
culated from the expression,
X
2
2
R ¼
½ðvobsðTiÞ ꢁ vcalðTiÞÞ =vobsðTiÞ ꢃ
ð5Þ
i
where vobs(Ti) and vcal(Ti) are the observed and calculated
magnetic susceptibilities at temperature Ti, respectively.
The magnetic data for the complex are fitted using the
model Hamiltonian. The best fit gives J1, J2 and J3 values
as ꢁ86.3 cmꢁ1, ꢁ47.32 cmꢁ1 and 11.13 cmꢁ1, respectively.
The intermolecular interaction (J0) is weak and antiferro-
magnetic in nature, giving a value of ꢁ0.765 cmꢁ1. The g
value used for the theoretical fitting of the magnetic data
are 2.02. The Curie constant obtained from the fit corre-
sponds to an impurity concentration of 0.03 free-spins
per tetranuclear unit. The error (R) of the fit is
1.7 · 10ꢁ4. The energy levels of the copper cluster are
shown in Fig. 5. The ground state is a low-spin singlet with
a triplet state lying above because of the dominant antifer-
romagnetic interactions present in the system. The singlet
triplet gap is 74.2 cmꢁ1 and the quintet state is
207.6 cmꢁ1 above the singlet ground state.
References
[1] (a) R.E.P. Winpenny, Adv. Inorg. Chem. 52 (2001) 1;
(b) V.G. Makhankova, O.Y. Vassilyeva, V.N. Kokozay, B.W.
Skelton, J. Reedijk, G.A. Vanalbada, L. Sorace, D. Gatteschi, New
J. Chem. 25 (2001) 685;
(c) K.S. Murray, Adv. Inorg. Chem. 43 (1995) 261.
[2] (a) S.J. Lippard, J.M. Berg, Principles of Bioinorganic Chemistry,
University Science Books, Mill Valley, CA, 1994;
(b) W. Kaim, B. Schwerderski, Bioinorganic Chemistry: Inorganic
Elements in the Chemistry of Life, Wiley, Chichester, 1994;
(c) A. Messerschmidt (Ed.), Multi-Copper Oxidases, World Scientific,
Singapore, 1997;
(d) R.H. Holm, P. Kennepohl, E.I. Solomon, Chem. Rev. 96 (1996)
2239;
(e) E.I. Solomon, U.M. Sundaram, T.E. Machonkin, Chem. Rev. 96
(1996) 2563;
(f) A. Messerschmidt, Struct. Bond. (Berlin) 90 (1998) 37.
[3] (a) H. Oshio, Y. Saito, T. Ito, Angew. Chem., Int. Ed. Engl. 36
(1997) 2673;
4. Conclusions
(b) J. Sletten, A. Sørensen, M. Julve, Y. Journaux, Inorg. Chem. 29
(1990) 5054;
A new tetranuclear copper(II) complex showing a
covalent linkage of two dicopper(II) units by two 3-phenyl-
pyrazole ligands has been prepared and structurally char-
acterized. The crystal structure shows the presence of a
discrete decameric water aggregate that is formed from
two dimeric and one cyclic hexameric water unit and the
water assembly is stabilized by the host structure through
hydrogen bonding interactions involving the phenoxo oxy-
gen atoms of the Schiff base. The important role of the
copper(II) complex containing a multidentate Schiff base
as the host structure is observed in the stabilization of a
large size water aggregate. The results are of significance
considering the presence of hexameric water clusters in
bulk water. The theoretical fitting of the magnetic data
shows the presence of two dominant antiferromagnetic
and one minor ferromagnetic exchange pathway, leading
to the singlet magnetic ground state of the pseudo-linear
tetranuclear copper(II) complex.
(c) R. Wegner, M. Gottschaldt, H. Go¨rls, E.-G. Ja¨ger, D. Klemm,
Chem. Eur. J. 7 (2001) 2143;
(d) X. Shi-tan, R. Nukada, M. Mikuriya, Y. Nakano, J. Chem. Soc.,
Dalton Trans. (1999) 2415.
[4] (a) L. Merz, W. Hasse, J. Chem. Soc., Dalton Trans. (1978) 1594;
(b) R. Mergehenn, L. Merz, W. Hasse, J. Chem. Soc., Dalton Trans.
(1980) 1703;
(c) L. Walz, H. Paulus, W. Hasse, J. Chem. Soc., Dalton Trans.
(1983) 657;
(d) H. Astheimer, F. Nepveu, L. Walz, W. Hasse, J. Chem. Soc.,
Dalton Trans. (1985) 315.
[5] D. Gatteschi, R. Sessoli, Angew. Chem., Int. Ed. 42 (2003) 268.
[6] A. Mukherjee, M. Nethaji, A.R. Chakravarty, Angew. Chem., Int.
Ed. 43 (2004) 87.
[7] A. Mukherjee, R. Raghunathan, M.K. Saha, M. Nethaji, S. Ram-
asesha, A.R. Chakravarty, Chem. Eur. J. 11 (2005) 3087.
[8] (a) A. Mukherjee, M.K. Saha, M. Nethaji, A.R. Chakravarty, Chem.
Commun. (2004) 716;
(b) A. Mukherjee, M.K. Saha, M. Nethaji, A.R. Chakravarty, New
J. Chem. 29 (2005) 596.
[9] (a) B. Sreenivasulu, J.J. Vittal, Angew. Chem., Int. Ed. 43 (2004)
5769;
(b) L.E. Cheruzel, M.S. Pometun, M.R. Cecil, M.S. Mashuta, R.J.
Wittebort, R.M. Buchanan, Angew. Chem., Int. Ed. 42 (2003) 5452.
[10] (a) J.N. Moorthy, R. Natarajan, P. Venugopalan, Angew. Chem.,
Int. Ed. 41 (2002) 3417;
Acknowledgments
We thank the Department of Science and Technology,
Government of India, for the CCD facility and financial sup-
(b) J.M. Ugalde, I. Alkorta, J. Elguero, Angew. Chem., Int. Ed. 39
(2000) 717.