K. Rajagopal, L. Pakstis and J. Kretsinger, J. Am. Chem. Soc., 2002,
124, 15030.
5 (a) J. M. Schnur, Science, 1993, 262, 1669; (b) M. S. Spector,
K. R. Easwaran, G. Jyothi, J. V. Selinger, A. Singh and J. M. Schnur,
Proc. Natl. Acad. Sci. USA, 1996, 93, 12943.
6 (a) A. V. Melechko, T. E. McKnight, D. K. Hensley, M. A. Guillorn,
A. Y. Borisevich, V. I. Merkulov, D. H. Lowndes and M. L. Simpson,
Nanotechnology, 2003, 14, 1029; (b) E. S. Steigerwalt, G. A. Deluga and
C. M. Lukehart, J. Phys. Chem. B, 2002, 106, 760.
7 Z. L. Wang, Adv. Mater., 2000, 12, 1295.
8 (a) C. M. Niemeyer, Angew. Chem., Int. Ed., 2001, 40, 4128; (b)
S. G. Zhang, Nat. Biotechnol., 2003, 21, 1171; (c) N. Yamada, K. Ariga,
M. Naito, K. Matsubara and E. Koyama, J. Am. Chem. Soc., 1998,
120, 12192; (d) N. Yamada, E. Koyama, T. Imai, K. Matsubara and
S. Ishida, Chem. Commun., 1996, 2297; (e) H. Yokoi, T. Kinoshita and
S. Zhang, Proc. Natl. Acad. Sci. USA, 2005, 102, 8414; (f)
S. Matsumura, S. Uemura and H. Mihara, Chem.–Eur. J., 2004, 10,
2789; (g) J. D. Hartgerink, E. Beniash and S. I. Stupp, Science, 2001,
294, 1684; (h) K. L. Niece, J. D. Hartgerink, J. J. J. M. Donners and
S. I. Stupp, J. Am. Chem. Soc., 2003, 125, 7146; (i) E. D. Sone and
S. I. Stupp, J. Am. Chem. Soc., 2004, 126, 12756; (j) L. Li and S. I.
Stupp, Angew. Chem., Int. Ed., 2005, 44, 1833.
Fig. 4 Schematic representation of the molecular self-assembly of
compound 1 illustrating the formation of secondary structure from the
primary structure, tertiary structure from the secondary structure and
quaternary structure from the corresponding tertiary structure.
helical nanofiber) (ESI Fig. S11a{). Further assembly of these
single stranded helical nanofibers leads to the formation of the
triple helical nanofiber (i.e. the quaternary structure). In this
system, the supramolecular structure formed by the secondary
structural unit of compound 1 produces the triple helical
nanofibers observed in the TEM image.
9 (a) G. A. Silva, C. Czeisler, K. L. Niece, E. Beniash, D. A. Harrington,
J. A. Kessler and S. I. Stupp, Science, 2004, 303, 1352; (b) M. E. Davis,
M. Motion, D. A. Narmoneva, T. Takahashi, D. Hakuno, R. D. Kamm,
S. Zhang and R. T. Lee, Circulation, 2005, 111, 442.
Triple helical nanofibers can be successfully constructed using
chiral molecular scaffolds (compounds 1, 2 and 3); the handedness
of the triple helical nanofibers can also be nicely tuned by reversing
the chiral nature of the molecular building blocks. The study
vividly exemplifies not only the construction of self-assembled
helical nanostructures but also shows the reversal of the
handedness of the nanostructured assemblage using mirror image
molecular building blocks. The achiral self-assembling benzene-
1,3,5-tricarboxamide molecule fails to form chiral nanostructures
indicating the transfer of molecular chirality into supramolecular
chirality.19,12 Functional chiral triple helical nanofiber formation
using suitable molecular building blocks are yet to be explored.
This work is supported by DST, New Delhi, India Project No
(SR/S5/OC-29/2003). We thank EPSRC and the University of
Reading, UK for funds for Marresearch Image Plate Systems. P. P.
Bose and A. K. Das wish to acknowledge the CSIR, New Delhi,
India for financial assistance. Thanks are also due to the partial
support from the Nanoscience and Technology Initiatives, DST,
Govt. of India, New Delhi.
10 J. D. Hartgerink, E. Beniash and S. I. Stupp, Proc. Natl. Acad. Sci.
USA, 2002, 99, 5133.
11 M. G. Ryadnov and D. N. Woolfson, J. Am. Chem. Soc., 2004, 126,
7454.
12 T. Gulik-Krzywicki, C. Fouquey and J. M. Lehn, Proc. Natl. Acad. Sci.
USA, 1993, 90, 163.
13 J. J. D. de Jong, L. N. Lukas, R. M. Kellogg, J. H. van Esch and
B. L. Feringa, Science, 2004, 304, 278.
14 B. W. Messmore, P. A. Sukerkar and S. I. Stupp, J. Am. Chem. Soc.,
2005, 127, 7992.
15 T. Koga, M. Matsuoka and N. Higashi, J. Am. Chem. Soc., 2005, 127,
17596.
16 All reported compounds 1–4 were synthesized from methyl esters of
corresponding L-valine, L-leucine, D-leucine and dimethyl glycine,
respectively, and benzene-1,3,5-tricarboxylic acid using dicyclohexylcar-
bodiimide–1-hydroxybenzotriazole (DCC–HOBt). Detailed synthetic
procedures are given in the ESI{.
17 Crystal data for 1: C27H39N3O9, MW = 549.61, hexagonal, space group
3
˚
˚
P63, a = 15.769(3), b = 15.769(3), c = 7.091(11) A, U = 1527(5) A , Z =
2, Dcalc = 1.195 g cm23. Diffraction data were measured for compound
1 with MoKa radiation at 293 K. The crystal was positioned at 70 mm
from the Image Plate. 100 frames were measured at 2u intervals with a
counting time of 5 min to give 1906 independent reflections. Data
analysis was carried out with the XDS program.20 The structure was
solved using direct methods with the SHELX97 program.21 The non-
hydrogen atoms were refined with anisotropic thermal parameters. The
hydrogen atoms were included in geometric positions and given thermal
parameters equivalent to 1.2 times those of the atom to which they were
attached. The structure was refined on F2 using SHELXL. The structure
contains a crystallographic 3-fold axis. The three equivalent asymmetric
carbon atoms were given S-chirality in accordance with the synthesis.
The final R values were R1 0.1011 and wR2 0.2557 for 1133 data with
I > 2s(I). The largest peak and hole in the final difference Fourier were
Notes and references
1 M. Reches and E. Gazit, Science, 2003, 300, 625.
2 (a) M. G. Ryadnov and D. N. Woolfson, Nat. Mater., 2003, 2, 329; (b)
N. J. Gay, L. C. Packman, M. A. Weldon and J. C. J. Barna, FEBS
Lett., 1991, 291, 87; (c) A. Aggeli, M. Bell, N. Boden, J. N. Keen,
P. F. Knowles, T. C. McLeish, M. Pitkeathly and S. E. Radford,
Nature, 1997, 386, 259.
3 (a) M. J. Van Raaij, A. Mitraki, G. Lavigne and S. Cusack, Nature,
1999, 401, 935; (b) J. W. Kelly and W. E. Balch, J. Cell Biol., 2003, 461;
(c) J. C. Rochet and P. T. Lansbury, Jr., Curr. Opin. Struct. Biol., 2000,
10, 60; (d) S. Lee and D. Eisenberg, Nat. Struct. Mol. Biol., 2003, 10,
725; (e) T. Scheibel, R. Parthasarathy, G. Swaicki, X. M. Lin, H. Jaeger
and S. L. Lindquist, Proc. Natl. Acad. Sci. USA, 2003, 100, 4527.
4 (a) M. L. de la Paz, K. Goldie, J. Zurdo, E. Lacroix, C. M. Dobson,
A. Hoenger and L. Serrano, Proc. Natl. Acad. Sci. USA, 2002, 99,
16052; (b) W. A. Petka, J. L. Harden, K. P. McGrath, D. Wirtz and
D. A. Tirrel, Science, 1998, 281, 389; (c) A. P. Nowak, V. Breedveld,
L. Pakstis, B. Ozbas, D. J. Pine, D. Pochan and T. J. Deming, Nature,
2002, 417, 424; (d) J. P. Schneider, D. J. Pochan, B. Ozbas,
0.75 and 20.40 e A23. CCDC 606026. For crystallographic data in CIF
˚
or other electronic format see DOI: 10.1039/b606371c.
18 (a) L. Brunsveld, H. Zhang, M. Glasbeek, J. A. J. M. Vekemans and
E. W. Meijer, J. Am. Chem. Soc., 2000, 122, 6175; (b) A. R. A. Palmans,
J. A. J. M. Vekemans, R. A. Hikmet, H. Fisher and E. W. Meijer, Adv.
Mater., 1998, 10, 873.
19 M. A. Mateos-Temoneda, M. Crego-Calama and D. N. Reinhoudt,
Chem. Soc. Rev., 2004, 33, 363.
20 W. Kabsch, J. Appl. Crystallogr., 1988, 21, 916.
21 G. M. Sheldrick, SHELX97, program for crystal structure refinement,
University of Gottingen, 1997.
3198 | Chem. Commun., 2006, 3196–3198
This journal is ß The Royal Society of Chemistry 2006