Angewandte
Chemie
cross section s(2) values are 340 GM at 1200 nmfor 1a,
2050 GM at 1200 nmfor 10, and 7170 GM at 1380 nmfor 11,
respectively. In addition, the TPA spectra of 11 in the 1300–
1450-nmregion indicate that two-photon allowed states
should exist near 680–700 nm(see the Supporting Informa-
tion). In the case of 11, a highly notable enhancement of the
2005, 109, 2996; g) Y. Inokuma, N. Ono, H. Uno, D. Y. Kim, S. B.
Noh, D. Kim, A. Osuka, Chem.Commun. 2005, 3782; h) T. K.
Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda, A.
Osuka, D. Kim, J.Am.Chem.Soc. 2006, 128, 1700.
[5] a) H. J. Callot, E. Schaetfer, R. Cromer, F. Metz, Tetrahedron
1990, 46, 5253; b) L. Barloy, D. Dolphin, D. Dupre, T.
Wijesekera, J.Org.Chem.
1994, 59, 7976; c) S. Richeter, C.
s
(2) value in comparison with those of 9 and 10 demonstrates
Jeandon, J.-P. Gisselbrecht, R. Ruppert, H. J. Callot, J.Am.
Chem.Soc. 2002, 124, 6168; d) H. S. Gill, M. Harmjanz, J.
Santamaria, I. Finger, M. J. Scott, Angew.Chem. 2004, 116, 491;
Angew.Chem.Int.Ed. 2004, 43, 485; e) O. Yamane, K. Sugiura,
H. Miyasaka, K. Nakamura, T. Fujimoto, K. Nakamura, T.
Kaneda, Y. Sakata, M. Yamashita, Chem.Lett. 2004, 33, 40; f) S.
Fox, R. W. Boyle, Chem.Commun. 2004, 1322; g) A. N. Cam-
midge, P. J. Scaife, G. Berber, D. L. Hughes, Org.Lett. 2005, 7,
3413; h) D. Shen, C. Liu, Q. Chen, Chem.Commun. 2005, 4982;
i) E. Hao, F. R. Fronczek, M. G. H. Vicente, J.Org.Chem. 2006,
71, 1233.
that the expansion of p conjugation by incorporating azulene-
fused structures is the overriding factor in increasing the
s
(2) value. The enlargement of azulene-fused structures gives
rise to a very effective p-electron conjugation pathway
throughout the porphyrin moiety.[4f]
In summary, the azulene-fused porphyrins, 9, 10, and 11
were synthesized through the oxidation of meso-(4-azulenyl)-
porphyrins 6, 7, and 8c, respectively, with FeCl3. The azulene-
fused strategy allowed the realization of highly p-conjugated
porphyrinic electronic systems, which are promising TPA
pigments.
[6] a) K.-P. Zeller, Methoden der Organishen Chemie (Houben-
Weyl), Vol.V/2c (Ed.: H. Krof), Georg Themie, Stuttgart, 1985,
p. 127; b) R. S. H. Liu, A. E. Asato, J.Photochem.Photobiol.C
2003, 4, 179; c) azuliporphyrins were reported by S. R. Graham,
D. A. Colby, T. D. Lash, Angew.Chem. 1997, 109, 867; Angew.
Chem.Int.Ed.Engl. 1997, 36, 839; d) D. A. Colby, T. D. Lash,
Chem.Eur.J. 2002, 8, 5397.
Received: March 8, 2006
Published online: May 9, 2006
[7] K. Kurotobi, A. Osuka, Org.Lett. 2005, 7, 1055.
[8] U. Siegel, R. Mues, R. Dönig, T. Eicher, M. Blechschmidt, H.
Becker, Phytochemistry 1992, 31, 1671.
[9] M. G. Vetelino, J. W. Coe, Tetrahedron Lett. 1994, 35, 219.
[10] J. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney, A. M.
Marguerettaz, J.Org.Chem. 1987, 52, 827.
[11] Crystallographic data for [Cu(6)]: C76H81Cl6CuN4O2, Mr =
1358.69, monoclinic, space group P21/n, Z = 4, a = 19.2311(15),
Keywords: azulenes · fused-ring systems · optical properties ·
porphyrinoids · two-photon absorption
.
[1] a) M. J. Crossley, P. L. Burn, J.Chem.Soc.Chem.Commun.
1987, 39; b) M. J. Crossley, P. L. Burn, J.Chem.Soc.Chem.
Commun. 1991, 1569; c) M. J. Crossley, L. J. Govenlock, J. K.
Prashar, J.Chem.Soc.Chem.Commun.
1995, 2379; d) N.
b = 10.0770(8),
c = 36.129(3) ,
b = 98.146(2)8,
V=
6930.8(9) 3,
D
calcd = 1.302 gcmÀ3
, T= 90(2) K, crystal size
Kobayashi, M. Numao, R. Kondo, S. Nakajima, T. Osa, Inorg.
Chem. 1991, 30, 2241; e) L. Jaquinod, O. Siri, R. G. Khoury,
K. M. Smith, Chem.Commun. 1998, 1261; f) M. G. H. Vicente,
M. T. Cancilla, C. B. Lebrilla, K. M. Smith, Chem.Commun.
1998, 2355; g) M. G. H. Vicente, L. Jaquinod, K. M. Smith,
0.70 0.40 0.30 mm3, R = 0.0996 (I > 2s(I)), Rw = 0.2661,
GOF = 1.044. CCDC-600204 contains the supplementary crys-
tallographic data for this paper. These data can be obtained free
of charge fromThe Cambridge Crystallographic Data Centre via
Chem.Commun.
1999, 1771; h) H. L. Anderson, Chem.
Commun. 1999, 2323.
[12] a) A. Osuka, H. Shimidzu, Angew.Chem. 1997, 109, 93; Angew.
[2] a) K. Sugiura, T. Matsumoto, S. Ohkouchi, Y. Naitoh, T. Kawai,
Y. Takai, K. Ushiroda, Y. Sakata, Chem.Commun. 1999, 1957;
b) A. Tsuda, A. Nakano, H. Furuta, H. Yamochi, A. Osuka,
Angew.Chem. 2000, 112, 572; Angew.Chem.Int.Ed. 2000, 39,
558; c) A. Tsuda, H. Furuta, A. Osuka, Angew.Chem. 2000, 112,
Chem.Int.Ed.Engl.
Y. H. Kim, D. H. Jeong, D. Kim, Angew.Chem. 2000, 112, 1517;
Angew.Chem.Int.Ed. 2000, 39, 1458.
1997, 36, 135; b) N. Aratani, A. Osuka,
[13] M. Mꢀller, C. Kꢀbel, K. Mꢀllen, Chem.Eur.J. 1998, 4, 2099.
[14] The porphyrins 8b and 8c were prepared from 3b and 3c and
pyrrole in 10 and 12% yields, respectively, by using the methods
developed by Lindsey.[10] The formylazulenes 3b and 3c were
prepared by a similar route using 3a (see the Supporting
Information).
2649; Angew.Chem.Int.Ed.
2000, 39, 2549; d) A. Tsuda, A.
Osuka, Science 2001, 293, 79; e) A. Tsuda, H. Furuta, A. Osuka,
J.Am.Chem.Soc. 2001, 123, 10304; f) A. Tsuda, Y. Nakamura,
A. Osuka, Chem.Commun. 2003, 1096.
[3] a) H. Aihara, L. Jaquinod, D. J. Nurco, K. M. Smith, Angew.
[15] Crystallographic data for 11: C136H140N4NiO8, Mr = 2017.23,
monoclinic, space group P21/c, Z = 8, a = 26.6423(14), b =
42.798(2), c = 26.3773(14) , b = 104.820(2)8, V= 29076(3) 3,
Chem. 2001, 113, 3547; Angew.Chem.Int.Ed.
2001, 40, 3439;
b) M. Nath, J. C. Huffman, J. M. Zaleski, J.Am.Chem.Soc.
2003, 125, 11484; c) K. Tan, L. Jaquinod, R. Paolesse, S. Nardis,
C. D. Natale, A. D. Carlo, L. Prodi, M. Montalti, N. Zaccheroni,
K. M. Smith, Tetrahedron 2004, 60, 1099; d) J. D. Spence, T. D.
Lash, J.Org.Chem. 2000, 65, 1530.
D
calcd = 0.922 gcmÀ3
, T= 90(2) K, crystal size 0.55 0.40
0.35 mm3, R = 0.0888, Rw = 0.2465, GOF = 1.030. CCDC-
600205 contains the supplementary crystallographic data for
this paper. These data can be obtained free of charge fromThe
ac.uk/data_request/cif. Solvent molecules contained in the
[4] a) T. E. O. Screen, J. R. G. Thorne, R. G. Denning, D. G. Buck-
nall, H. L. Anderson, J.Am.Chem.Soc.
2002, 124, 9712;
b) T. E. O. Screen, J. R. G. Thorne, R. G. Denning, D. G. Buck-
nal, H. L. Anderson, J.Mater.Chem. 2003, 13, 2796; c) H. T.
Uyeda, Y. Zhao, K. Wostyn, I. Asselberghs, K. Clays, A.
lattice were severely disordered and could not be resolved.
The programSQUEEZE
remove the solvent density.
in PLATON[18b] was used to
[18a]
Persoons, M. J. Therien, J.Am.Chem.Soc.
2002, 124, 13806;
[16] D. Kim, C. Kirmaier, D. Holten, Chem.Phys. 1983, 75, 305.
[17] M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. G. Hagan, E. W.
van Stryland, IEEE J.Quantum Electron. 1990, 26, 760.
[18] a) P. V. Sluis, A. L. Spek, Acta Crystallogr.Sect.A 1990, 46, 194;
b) A. L. Spek, Acta Crystallogr.Sect.A 1990, 46, c34.
d) K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, K. Ohta, J.
Am.Chem.Soc. 2003, 125, 13356; e) C. Ikeda, Z. S. Yoon, M.
Park, H. Inoue, D. Kim, A. Osuka, J.Am.Chem.Soc. 2005, 127,
534; f) D. Y. Kim, T. K. Ahn, J. H. Kwon, D. Kim, T. Ikeue, N.
Aratani, A. Osuka, M. Shigeiwa, S. Maeda, J.Phys.Chem.A
Angew. Chem. Int. Ed. 2006, 45, 3944 –3947ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3947