Thermo- and Photoresponsive Mesogenic Dimers
A R T I C L E S
LCs doped with small amounts of photoresponsive molecules,9,10
and such systems find applications in the field of molecular
electronics for development of high-speed rewritable recording
devices,11 optical data storage,12 patterned nanostructures,13
fluorescence imaging,14 and band gap materials.15 Chiral nematic
(N*) LCs are especially attractive from this point of view, since
in these systems the molecules self-organize into helically
ordered structures which lead to selective reflection of light,
depending upon the pitch of the helix. The helical pitch of N*
LCs is dependent upon various factors such as temperature,
electrical, or magnetic field and on the nature and concentration
of impurities, which makes it possible to tune their color by a
variety of external stimuli.16
Chart 1
LCs essentially consist of pure materials with well-defined
molecular weights where the problem of dilution of the
photochrome does not exist. This can result in much faster
switching times and enhanced stability of the film.8,22 Our initial
effort in the design of inherently photoactive liquid crystals for
recording color images met with only a partial success.23
Although a light induced smectic to N* phase transition was
observed in cholesterol-azobenzene linked systems, the rapid
thermal cis-trans isomerization of the azobenzene moiety
resulted in a loss of the recorded image. Moreover these
materials did not form LC stable glasses.
Our continued interest in designing an inherently photoactive
glass forming N* LCs leads us to the synthesis of a series of
novel asymmetric liquid crystal dimers, consisting of a choles-
terol moiety linked to a diphenylbutadiene chromophore (CBCn,
Chart 1) via flexible alkyl chains.24 These liquid crystal dimers
possess the combined glass forming properties of the cholesterol
moiety and the photochromic and luminescent properties of the
butadiene moiety. Photoinduced cis/trans isomerization of the
butadiene chromophore in these materials could be utilized to
bring about an isothermal phase transition from the smectic to
the cholesteric state.25 By photochemically controlling the cis/
trans isomer ratio, the pitch of the cholesteric could be
continuously varied making it possible to tune the color of the
film over the entire visible region, and the color images thus
generated could be stabilized by converting them to N* glasses.
These materials were also polymorphic, exhibiting two crystal-
line forms possessing distinctly different fluorescence properties.
The ability to thermally switch these materials from one
crystalline form to the other in a reversible manner also makes
them useful for recording fluorescent images.
Mesogenic dimers or twin mesogens, which consist of
molecules containing two mesogenic units, are currently of great
interest since they exhibit complex and novel phase behavior
not usually observed in conventional LC architectures.17 We
have recently reported on dicholesteryl liquid crystals capable
of forming stable glassy LCs in which the helical ordering of
the N* phase is retained.18 Glass forming LCs and in particular
N* glasses have been attracting increasing attention in view of
their potential application as optical filters, polarizers, and lasing
materials.19 We have shown that the dicholesteryl esters doped
with photoresponsive chromophores such as azobenzene or
diphenylbutadiene derivatives could be utilized for light induced
recording of full color images.20 Recent studies have shown that
inherently photoactive LCs possess several advantages over
doped systems.21,22 Films drawn from inherently photoactive
(9) (a) Moriyama, M.; Mizoshita, N.; Yokota, T.; Kishimoto, K.; Kato, T. AdV.
Mater. 2003, 15, 1335-1338. (b) Gibbons, M.; Shannon, P. J.; Sun, S.-T.;
Swetlin, B. J. Nature 1991, 351, 49. (c) Burnham, K. S.; Schuster, G. B.
J. Am. Chem. Soc. 1999, 121, 10245-10246.
(10) (a) van Delden, R. A.; van Gelder, M. B.; Huck, N. P. M.; Feringa, B. L.
AdV. Funct. Mater. 2003, 13, 319-324. (b) Ikeda, T.; Tsutsumi, O. Science
1995, 268, 1873-1875.
(11) (a) Tomasulo, M.; Giordani, S.; Raymo, F. M. AdV. Funct. Mater. 2005,
15, 787-794. (b) Maly, K. E.; Wand, M. D.; Lemieux, R. P. J. Am. Chem.
Soc. 2002, 124, 7898-7899.
(12) (a) Gourevich, I.; Pham, H.; Jonkman, J. E. N.; Kumacheva, E. Chem.
Mater. 2004, 16, 1472-1479. (b) Hikmet, R. A. M.; Kemperman, H. Nature
1998, 392, 476-479. (c) Kawata, S.; Kawata, Y. Chem. ReV. 2000, 100,
1777-1788.
(13) (a) Tabe, Y.; Yokoyama, H. Nat. Mater. 2003, 2, 806-809. (b) Hubert,
C.; Rumyantseva, A.; Lerondel, G.; Grand, J.; Kostcheev, S.; Billot, L.;
Vial, A.; Bachelot, R.; Royer, P.; Chang, S.-h.; Gray, S. K.; Wiederrecht,
G. P.; Schatz, G. C. Nano Lett. 2005, 5, 615-619. (c) de Jong, J. J. D.;
Hania, P. R.; Pugzˇlys, A.; Lucas, L. N.; de Loos, M.; Kellog, R. M.; Feringa,
B. L.; Duppen, K.; van Esch, J. H. Angew. Chem., Int. Ed. 2005, 44, 2373-
2376.
(14) (a) Furumi, S.; Janietz, D.; Kidowaki, M.; Nakagawa, M.; Morino, S.;
Stump, J.; Ichimura, K. Chem. Mater. 2001, 13, 1434-1437. (b) Willets,
K. A.; Ostroverkhova, O.; He, M.; Twieg, R. J.; Moerner, W. E. J. Am.
Chem. Soc. 2003, 125, 1174-1175. (c) Kim, J.-M.; Min, S. J.; Lee, S. W.;
Bok, J. H.; Kim, J. S. Chem. Commun. 2005, 3427-3429.
(15) Kubo, S.; Gu, Z.-Z.; Takahashi, K.; Fujishima, A.; Segawa, H.; Sato, O. J.
Am. Chem. Soc. 2004, 126, 8314-8319.
(16) (a) Tamaoki, N. AdV. Mater. 2001, 13, 1135-1147. (b) Yoshioka, T.; Ogata,
T.; Nonaka, T.; Moritsugu, M.; Kim, S.-N.; Kurihara, S. AdV. Mater. 2005,
17, 1226-1229. (c) Hwang, J.; Song, M. H.; Park, B.; Nishimura, S.;
Toyooka, T.; Wu, J. W.; Takanishi, Y.; Ishikawa, K.; Takezoe, H. Nat.
Mater. 2005, 4, 383-387.
(17) (a) Imrie, C. T.; Luckurst, G. R. Handbook of Liquid Crystals; Demus, D.,
Goodby, J. W., Gray, G. W., Spiess, H. W., Vill, V., Eds.; Wiley VCH:
Weinheim, 1998. (b) Coles, H. J.; Pivnenko, M. N. Nature 2005, 436, 997-
1000. (c) Date, R. W.; Bruce, D. W. J. Am. Chem. Soc. 2003, 125, 9012-
9013. (d) Henderson, P. A.; Imrie, C. T. Macromolecules 2005, 38, 3307-
3311.
(18) (a) Tamaoki, N.; Parfenov, A. V.; Masaki, A.; Matsuda, H. AdV. Mater.
1997, 9, 1102-1104. (b) Mallia, V. A.; Tamaoki, N. Chem. Soc. ReV. 2004,
33, 76-84.
Results and Discussion
Phase Transition Behavior. The mesomorphic properties of
the CBC derivatives were investigated by polarized optical
microscopy (POM), differential scanning calorimetry (DSC),
and small angled X-ray diffraction (XRD). The transition
temperatures and corresponding enthalpy values are summarized
in Table 1. With the exception of CBC, which decomposed
above its isotropization temperature, all the derivatives showed
(20) (a) Tamaoki, N.; Song, S.; Moriyama, M.; Matsuda, H. AdV. Mater. 2000,
12, 94-97. (b) Moriyama, M.; Song, S.; Matsuda, H.; Tamaoki, N. J. Mater.
Chem. 2001, 11, 1003-1010. (c) Davis, R.; Mallia, V. A.; Das, S.; Tamaoki,
N. AdV. Funct. Mater. 2004, 14, 743-748.
(21) (a) Yu, Y.; Nakano, M.; Ikeda, T. Nature 2003, 425, 145. (b) Yagai, S.;
Nakajima, T.; Kishikawa, K.; Kohmoto, S.; Karatsu, T.; Kitamura, A. J.
Am. Chem. Soc. 2005, 127, 11134-11139.
(19) (a) Chen, H. P.; Katsis, D.; Mastrangelo, J. C.; Chen, S. H.; Jacobs, S. D.;
Hood, P. J. AdV. Mater. 2000, 12, 1283-1286. (b) Shibaev, P. V.; Madesen,
J.; Genack, A. Z. Chem. Mater. 2004, 16, 1397-1399. (c) Chen, S. H.;
Katsis, D.; Schmid, A. W.; Mastrangelo, J. C.; Tsutsui, T.; Blanton, T. N.
Nature 1999, 397, 506-508. (d) Culligan, S. W.; Geng, Y.; Chen, S. H.;
Klubek, K.; Vaeth, K. M.; Tang, C. W. AdV. Mater. 2003, 15, 1176-
1180.
(22) (a) Frigoli, M.; Welch, C.; Mehl, G. H. J. Am. Chem. Soc. 2004, 126,
15382-15383. (b) Tamaoki, N.; Aoki, Y.; Moriyama, M.; Kidowaki, M.
Chem. Mater. 2003, 15, 719-726.
(23) Mallia, V. A.; Tamaoki, N. Chem. Mater. 2003, 15, 3237-3239.
(24) Supporting Information.
(25) Davis, R.; Mallia, V. A.; Das, S. Chem. Mater. 2003, 15, 1057-1063.
9
J. AM. CHEM. SOC. VOL. 128, NO. 23, 2006 7693