particularly, enantioselectivity. In most cases of biohydroxy-
lation, even with the use of a chiral protecting group, the
enantiomeric excess values of products hardly exceed
90%.4-7
thesis, and synthetic methods involving catalytic asymmetric
hydrogenation,14a,15 reduction,16 Mukaiyama-aldol reaction,17
and Reformatsky reaction18 have been developed. Biocata-
lytic reduction of â-ketoesters,19 kinetic resolution of second-
ary alcohols,20 and deracemization21 have proved useful, as
well. Considering the easy availability of â-hydroxy al-
kanenitriles, which can be readily prepared from condensa-
tion of acetonitrile and various aldehydes,22 we envisioned
that highly efficient and enantioselective biotransformations
of nitriles would provide a convenient and unique approach
to optically active â-hydroxy carboxylic acids and their amide
derivatives. This has led us to undertake the current study,
and herein we report a successful docking/protecting group
strategy to dramatically enhance the enantioselectivity of
biotransformations of nitriles. It has been reported23 that
enzyme-catalyzed kinetic resolution of â-substituted nitriles
gave generally unsatisfactory enantioselectivity. Desymme-
trization of prochiral 3-hydroxyglutaronitrile yielded poor
enantiocontrol, and the enantioselectivity was improved by
using either a 3-benzylated substrate24 or an engineered
nitrilase.25
Biotransformations of nitriles, either through a direct con-
version from a nitrile to a carboxylic acid catalyzed by a nitri-
lase or through the nitrile hydratase-catalyzed hydration of
a nitrile followed by the amide hydrolysis catalyzed by the
amidase,8 are an effective and environmentally benign method
for the production of carboxylic acids and their amide deriva-
tives.9 Recent studies have demonstrated that biotransforma-
tions of nitriles complement the existing asymmetric chemi-
cal and enzymatic methods for the synthesis of chiral carbox-
ylic acids and their derivatives bearing an R-stereocenter.10-13
Optically active R-unsubstituted â-hydroxy carboxylic
acids and their derivatives are key intermediates in the
synthesis of natural products and biologically important
compounds.14 Much effort has been devoted to their syn-
(5) (a) De Raadt, A.; Fetz, B.; Griengl, H.; Klingler, M. F.; Kopper, I.;
Krenn, B.; Mu¨unzer, D. F.; Ott, R. G.; Plachota, P.; Weber, H. J.; Braunegg,
G.; Mosler, W.; Saf, R. Eur. J. Org. Chem. 2000, 3835. (b) De Raadt, A.;
Fetz, B.; Griengl, H.; Klingler, M. F.; Krenn, B.; Mereiter, K.; Mu¨unzer,
D. F.; Plachota, P.; Weber, H.; Saf, R. Tetrahedron 2001, 57, 8151.
(6) De Raadt, A.; Feichtenhofer, S.; Griengl, H.; Klingler, M. F.; Weber,
H. J. Mol. Catal. B: Enzymol. 2001, 11, 361.
(7) (a) Li, Z.; Feiten, H.-J.; Chang, D.; Duetz, W. A.; Van Beilen, J. B.;
Witholt, B. J. Org. Chem. 2001, 66, 8424. (b) Chang, D.; Feiten, H.-J.;
Witholt, B.; Li, Z. Tetrahedron: Asymmetry 2002, 13, 2141.
(8) For overviews, see: (a) Kobayashi, M.; Shimizu, S. FEMS Microbiol.
Lett. 1994, 120, 217. (b) Meth-Cohn, O.; Wang, M.-X. J. Chem. Soc., Perkin
Trans. 1 1997, 1099. (c) Meth-Cohn, O.; Wang, M.-X. J. Chem. Soc., Perkin
Trans. 1 1997, 3197 and references therein.
(9) Nagasawa, T.; Schimizu, H.; Yamada, H. Appl. Microbiol. Biotechnol.
1993, 40, 189.
(10) For reviews, see: (a) Sugai, T.; Yamazaki, T.; Yokoyama, M.; Ohta,
H. Biosci. Biotechnol. Biochem. 1997, 61, 1419. (b) Martinkova, L.; Kren,
V. Biocatal. Biotrans. 2002, 20, 73. (c) Wang, M.-X. Top. Catal. 2005,
35, 117.
(11) (a) DeSantis, G.; Zhu, Z.; Greenberg, W. A.; Wong, K.; Chaplin,
J.; Hanson, S. R.; Farwell, B.; Nicholson, L. W.; Rand, C. L.; Weiner, D.
P.; Robertson, D. E.; Burk, M. J. J. Am. Chem. Soc. 2002, 124, 9024. (b)
Effenberger, F.; Osswald, S. Tetrahedron: Asymmetry 2001, 12, 279. (c)
Hann, E. C.; Sigmund, A. E.; Fager, S. K.; Cooling, F. B.; Gavagan, J. E.;
Ben-Bassat, A.; Chauhan, S.; Payne, M. S.; Hennessey, S. M.; DiCosimo,
R. AdV. Synth. Catal. 2003, 345, 775. (d) Preiml, M.; Hillmayer, K.;
Klempier, N. Tetrahedron Lett. 2003, 44, 5057. (e) Yokoyama, M.;
Kashiwagi, M.; Iwasaki, M.; Fushuku, K.; Ohta, H.; Sugai, T. Tetrahe-
dron: Asymmetry 2004, 15, 2817.
(12) (a) Blakey, A. J.; Colby, J.; Williams, E.; O’Reilly, C. FEMS
Microbiol. Lett. 1995, 129, 57. (b) Colby, J.; Snell, D.; Black, G. W.
Monatsh. Chem. 2000, 131, 655. (c) O’Mahony, R.; Doran, J.; Coffey, L.;
Cahill, O. J.; Black, G. W.; O’Reilly, C. Antonie Van Leeuwenhoek 2005,
87, 221.
(13) (a) Wang, M.-X.; Lu, G.; Ji, G.-J.; Huang, Z.-T.; Meth-Cohn, O.;
Colby, J. Tetrahedron: Asymmetry 2000, 11, 1123. (b) Wang, M.-X.; Li,
J.-J.; Ji, G.-J.; Li, J.-S. J. Mol. Catal. B: Enzymol. 2001, 14, 77. (c) Wang,
M.-X.; Lin, S.-J. J. Org. Chem. 2002, 67, 6542. (d) Wang, M.-X.; Lin,
S.-J.; Liu, J.; Zheng, Q.-Y. AdV. Synth. Catal. 2004, 346, 439. (e) Wang,
M.-X.; Zhao, S.-M. Tetrahedron: Asymmetry 2002, 13, 1695. (f) Wang,
M.-X.; Feng, G.-Q. New J. Chem. 2002, 1575. (g) Wang, M.-X.; Feng,
G.-Q. J. Org. Chem. 2003, 68, 621. (h) Wang, M.-X.; Feng, G.-Q. J. Mol.
Catal. B: Enzymol. 2002, 18, 267. (i) Wang, M.-X.; Feng, G.-Q.; Zheng,
Q.-Y. AdV. Synth. Catal. 2003, 345, 695. (j) Wang, M.-X.; Lin, S.-J.; Liu,
C.-S.; Zheng, Q.-Y.; Li, J.-S. J. Org. Chem. 2003, 68, 4570. (k) Wang,
M.-X.; Deng, G.; Wang, D.-X.; Zheng, Q.-Y. J. Org. Chem. 2005, 70, 2439.
(l) Wang, M.-X.; Liu, J.; Wang, D.-X.; Zheng, Q.-Y. Tetrahedron:
Asymmetry 2005, 16, 2409.
(14) (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; John
Wiley & Sons: New York, 1994; pp 56-82. (b) Li, K. W.; Wu, J.; Xing,
W.; Simon, J. A. J. Am. Chem. Soc. 1996, 118, 7237. (c) Labeeuw, O.;
Blanc, D.; Phansavath, P.; Ratovelomanana-Vidal, V.; Genet, J.-P. Eur. J.
Org. Chem. 2004, 2352. (d) Herb, C.; Bayer, A.; Maier, M. E. Chem.s
Eur. J. 2004, 10, 5649.
(15) (a) Genet, J.-P. Acc. Chem. Res. 2003, 36, 908. (b) Hagemann, B.;
Junge, K.; Enthaler, S.; Michalik, M.; Riermeier, T.; Monsees, A.; Beller,
M. AdV. Synth. Catal. 2005, 347, 1978. (c) Touati, R.; Gmiza, T.; Jeulin,
S.; Deport, C.; Ratovelomanana-Vidal, V.; Hassine, B. B.; Genet, J.-P.
Synlett 2005, 2478.
(16) Wang, Z.; Zhao, C.; Pierce, M. E.; Fortunak, J. M. Tetrahedron:
Asymmetry 1999, 10, 225.
(17) (a) Nelson, S. G. Tetrahedron: Asymmetry 1998, 9, 357. (b)
Denmark, S. E.; Beutner, G. L.; Wynn, T.; Eastgate, M. D. J. Am. Chem.
Soc. 2005, 127, 3774. (c) Denmark, S. E.; Fan, Y.; Eastgate, M. D. J. Org.
Chem. 2005, 70, 5235. (d) Yamashita, Y.; Ishitani, H.; Shimizu, H.;
Kobayashi, S. J. Am. Chem. Soc. 2002, 124, 3292.
(18) (a) Ocampo, R.; Dolbier, W. R. Tetrahedron 2004, 60, 9325. (b)
Ribeiro, C. M. R.; Farias, F. M. C. Mini-ReV. Org. Chem. 2006, 3, 1.
(19) (a) Nakamura, K.; Kawai, Y.; Nakajima, N.; Ohno, A. J. Org. Chem.
1991, 56, 4778 and references therein. (b) Ribeiro, J. B.; Ramos, M. da C.
K. V.; Neto, F. R. de A.; Leite, S. G. F.; Antunes, O. A. C. J. Mol. Catal.
B: Enzymol. 2003, 24-25, 121. (c) Vitinius, U.; Schaffner, K.; Demuth,
M. J. Photochem. Photobiol. A: Chem. 2005, 169, 197. (d) Rodriguez, S.;
Kayser, M. M.; Stewart, J. D. J. Am. Chem. Soc. 2001, 123, 1547.
(20) (a) Wilson, W. K.; Baca, S. B.; Barber, Y. J.; Scallen, T. J.; Morrow,
C. J. J. Org. Chem. 1983, 48, 3960. (b) Boaz, N. W. J. Org. Chem. 1992,
57, 4289. (c) Itoh, T.; Fakagi, Y.; Nishigama, S. J. Org. Chem. 1991, 56,
1521. (d) Feichter, C.; Faber, K.; Griengl, H. Tetrahedron Lett. 1989, 30,
551.
(21) (a) Kumar, S.; Chadha, A. Tetrahedron: Asymmetry 2005, 16, 2790.
(b) Padhi, S. K.; Pandian, N. G.; Chadha, A. J. Mol. Catal. B: Enzymol.
2004, 29, 25.
(22) Itoh, T.; Mitsukura, K.; Kanphai, W.; Takagi, Y.; Kihara, H.;
Tsukube, H. J. Org. Chem. 1997, 62, 9165.
(23) (a) Wang, M.-X.; Wu, Y. Org. Biomol. Chem. 2003, 1, 535. (b)
Zhao, S.-M.; Wang, M.-X. Chin. J. Chem. 2002, 20, 1291. (c) Gradley, M.
L.; Knowles, C. J. Biotechnol. Lett. 1994, 16, 41. (d) Klempier, N.; de
Raat, A.; Faber, K.; Griengl, H. Tetrahedron Lett. 1991, 32, 341. (e)
Yokoyama, M.; Imai, N.; Sugai, T.; Ohta, H. J. Mol. Catal. B: Enzymol.
1996, 1, 135. (f) Taylor, S. K.; Chmiel, N. H.; Simons, L. J.; Vyvyan, J. R.
J. Org. Chem. 1996, 61, 9084. (g) Wu, Z.-L.; Li, Z.-Y. J. Mol. Catal. B:
Enzymol. 2003, 22, 105.
(24) (a) Kakeya, H.; Sakai, N.; Sano, A.; Yokoyama, M.; Sugai, T.; Ohta,
H. Chem. Lett. 1991, 1823. (b) Crosby, J. A.; Parratt, J. S.; Turner, N. J.
Tetrahedron: Asymmetry 1992, 3, 1547. (c) Maddrell, S. J.; Turner, N. J.;
Kerridge, A.; Willetts, A. J.; Crosby, J. Tetrahedron Lett. 1996, 37, 6001.
(d) Vink, M. K.; Schortinghuis, C. A.; Luten, J.; van Maarseveen, J. H.;
Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T. J. Org. Chem. 2002,
67, 7869.
(25) (a) DeSantis, G.; Wong, K.; Farwell, B.; Chatman, K.; Zhu, Z.;
Tomlinson, G.; Huang, H.; Tan, X.; Bibbs, L.; Chen, P.; Kretz, K.; Burk,
M. J. J. Am. Chem. Soc. 2003, 125, 11476. (b) Robertson, D. E.; Chaplin,
J. A.; DeSantis, G.; Podar, M.; Madden, M.; Chi, E.; Richardson, T.; Milan,
A.; Miller, M.; Weiner, D. P.; Wong, K.; McQuaid, J.; Farwell, B.; Preston,
L. A.; Tan, X.; Snead, M. A.; Keller, M.; Mathur, E.; Kretz, P. L.; Burk,
M. J.; Short, J. M. Appl. EnViron. Microbiol. 2004, 70, 2429.
3232
Org. Lett., Vol. 8, No. 15, 2006