Published on Web 06/27/2006
Comparison of Facially Amphiphilic Biaryl Dendrimers with
Classical Amphiphilic Ones Using Protein Surface
Recognition as the Tool
Akamol Klaikherd, Britto S. Sandanaraj, Dharma Rao Vutukuri, and
S. Thayumanavan*
Contribution from the Department of Chemistry, UniVersity of Massachusetts,
Amherst, Massachusetts 01003
Received April 2, 2006; E-mail: thai@chem.umass.edu
Abstract: Facially amphiphilic biaryl dendrimers are compared with the more classical benzyl ether
amphiphilic dendrimers for molecular recognition, using protein binding as the probe. The protein used for
the proposed study is chymotrypsin (ChT). A generation-dependent binding affinity was observed with the
benzyl ether dendrimers, while the affinities were independent of generation in the case of the biaryl
dendrimers. Similarly, although the ligands incorporated in both dendrons are the same, the biaryl dendrimers
are able to bind more proteins compared to the benzyl ether dendrimers. For example, G3-dendron of
biaryl dendrimer can bind six molecules of chymotrypsin, whereas G3-analogue of benzyl ether dendrimers
can bind only three molecules of chymotrypsin. This result is consistent with our hypothesis that the internal
layers of the facially amphiphilic biaryl dendrons are solvent-exposed and accessible for recognition. In
addition, the systematic size differences in dendrons were also used to gain insights into the substrate
selectivity that the enzyme gains upon binding to a ligand scaffold.
Introduction
only the peripheries of the dendrimers that are decorated with
the ligand functionalities.4 This is mainly because it is only the
The globular shape of dendrimers combined with the fact
that these molecules can be obtained with a high degree of
control in molecular weight have made them attractive candi-
dates for supramolecular chemistry.1,2 One of the major
advantages that dendrimers provide is the ability to display
multiple copies of ligand functionalities to bind to a receptor,
which takes advantage of features such as polyvalent interac-
tions.3 In cases where such a polyvalency is investigated, it is
peripheral functionalities that are thought to be fully solvent-
exposed and therefore can make available multiple copies of a
ligand for recognition. We have recently reported an amphiphilic
dendrimer in which every repeat unit within the dendrimer
backbone contains a hydrophilic and a hydrophobic functional-
ity.5 We had suggested that, in contrast to the classical
amphiphilic dendrimers,6-8 the biaryl ones adopt a conformation
(4) (a) Kensinger, R. D.; Yowler, B. C.; Benesi, A. J.; Schengrund, C.-L.
Bioconjugate Chem. 2004, 15, 349-358. (b) Wolfenden, M. L.; Cloninger,
M. J. J. Am. Chem. Soc. 2005, 127, 12168-12169. (c) Sashiwa, H.;
Shigemasa, Y.; Roy, R. Macromolecules 2001, 34, 3905-3909. (d)
Majoros, I. J.; Thomas, T. P.; Mehta, C. B.; Baker, J. R., Jr. J. Med. Chem.
2005, 48, 5892-5899. (e) Thoma, G.; Katopodis, A. G.; Voelcker, N.;
Duthaler, R. O.; Streiff, M. B. Angew. Chem., Int. Ed. 2002, 41, 3195-
3198. (f) Zanini, D.; Roy, R. Bioconjugate Chem. 1997, 8, 187-192. (g)
Gitsov, I.; Lin, C. Curr. Org. Chem. 2005, 9, 1025-1051 (h) Woller, E.
K.; Cloninger, M. J. Biomacromolecules 2001, 2, 1052-1054.
(1) For some general references to dendrimers, see: (a) Newkome, G. R.;
Moorefield, C. N.; Vo¨gtle, F. Dendrimers and Dendrons: Concepts,
Syntheses, Applications, 2nd ed.; Wiley-VCH: Weinheim, 2001. (b) Fre´chet,
J. M. J.; Tomalia, D. A. Dendrimers and Other Dendritic Polymers; John
Wiley & Sons: New York, 2001. (c) Grayson, S. M.; Fre´chet, J. M. J.
Chem. ReV. 2001, 101, 3819-3868. (d) Tomalia, D. A.; Fre´chet, J. M. J.
J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 2719-2728. (e) Fre´chet,
J. M. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 3713-3725. (f)
Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. ReV. 1999, 99, 1665-
1688. (g) Svenson, S.; Tomalia, D. A. AdV. Drug DeliVery ReV. 2005, 57,
2106-2129. (h) Cloninger, M. J. Curr. Opin. Chem. Biol. 2002, 6, 742-
748. (i) Majoral, J.-P.; Caminade, A.-N. Acc. Chem. Res. 2004, 37, 341-
348. (j) Fischer, M.; Vo¨gtle, F. Angew. Chem., Int. Ed. 1999, 38, 884-
905. (k) Gestermann, S.; Hesse, R.; Windisch, B.; Vo¨gtle, F. Stimulating
Concepts in Chemistry; Wiley-VCH: Weinheim, 2000.
(2) For reviews on supramolecular aspects of dendrimers, see; (a) Fre´chet, J.
M. J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4783-4787. (b) Newkome,
G. R.; He, E.; Moorefield, C. N. Chem. ReV. 1999, 99, 1689-1746. (c)
Zeng, F.; Zimmerman, S. C. Chem. ReV. 1997, 97, 1681-1712. (d) Smith,
D. K.; Diederich, F. Top. Curr. Chem. 2000, 210, 183-227. (e) Ong, W.;
Go´mez-Kaifer, M.; Kaifer, A. E. Chem. Commun. 2004, 1677-1683. (f)
Smith, D. K. Chem. Commun. 2006, 34-44.
(5) (a) Vutukuri, D. R.; Basu, S.; Thayumanavan, S. J. Am. Chem. Soc. 2004,
126, 15636-15637. (b) Bharathi, P.; Zhao, H.; Thayumanavan, S. Org.
Lett. 2001, 3, 1961-1964.
(6) Amphiphilic dendrimers based on convergent growth: (a) Hawker, C. J.;
Wooley, K. L.; Fre´chet, J. M. J. J. Chem. Soc., Perkin Trans. 1 1993, 1287-
1297. (b) Jayaraman, M.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1998, 120,
12996-12997. (c) Liu, M.; Kono, K.; Fre´chet, J. M. J. J. Controlled Release
2000, 65, 121-131. (d) Pesak, D. J.; Moore, J. S. Macromolecules 1997,
30, 6467-6482. (e) Luman, N. R.; Smeds, K. A.; Grinstaff, M. W. Chem.s
Eur. J. 2003, 9, 5618-5626.
(7) Amphiphilic dendrimers based on divergent growth: (a) Newkome, G. R.;
Moorefield, C. N.; Baker, G. R.; Saunders: M. J.; Grossman, S. H. Angew.
Chem., Int. Ed. Engl. 1991, 30, 1178-1180. (b) Newkome, G. R.;
Moorefield, C. N.; Baker, G. R.; Johnson, A. L.; Behera, R. K. Angew.
Chem., Int. Ed. Engl. 1991, 30, 1176-1178. (c) Kuzdzal, S. A.; Monnig,
C. A.; Newkome, G. R.; Moorefield, C. N. J. Chem. Soc., Chem. Commun.
1994, 2139-2140. (d) Pan, Y.; Ford, W. T. Macromolecules 1999, 32,
5468-5470. (e) Newkome, G. R.; Young, J. K.; Baker, G. R.; Potter, R.
L.; Audoly, L.; Cooper D.; Weis, C. D.; Morris K.; Johnson, C. S., Jr.
Macromolecules 1993, 26, 2394-2396.
(3) (a) Mammen, M.; Choi, S. K.; Whitesides, G. M. Angew. Chem., Int. Ed.
1998, 37, 2755-2794. (b) Gestwicki, J. E.; Cairo, C. W.; Strong, L. E.;
Oetjen, K. A.; Kiessling, L. L. J. Am. Chem. Soc. 2002, 124, 14922-
14933. (c) Badjic, J. D.; Nelson, A.; Cantrill, S. J.; Turnbull, W. B.;
Stoddart, J. F. Acc. Chem. Res. 2005, 38, 723-732. (d) Kitov, P. I.; Bundle,
D. R. J. Am. Chem. Soc. 2003, 125, 16271-16284. (e) Ro¨ckendorf, N.;
Lindhorst, T. K. Top. Curr. Chem. 2001, 217, 98-135.
9
10.1021/ja0622406 CCC: $33.50 © 2006 American Chemical Society
J. AM. CHEM. SOC. 2006, 128, 9231-9237
9231