Communications
Horikawa, R. A. Kloster, N. A. Hawryluk, E. J. Corey, J. Am.
Chem. Soc. 2004, 126, 8916.
[6] a) L.-a. Liao, J. M. Fox, J. Am. Chem. Soc. 2002, 124, 14322;
recent reviews on addition of organometallic reagents to cyclo-
propenes: b) J. M. Fox, N. Yan, Curr. Org. Chem. 2005, 9, 719;
c) M. Nakamura, H. Isobe, E. Nakamura, Chem. Rev. 2003, 103,
1295; recent examples of regio- and stereoselective hydro-
metallation reactions of cyclopropenes: d) E. Zohar, I. Marek,
Org. Lett. 2004, 6, 341; e) M. Rubina, M. Rubin, V. Gevorgyan, J.
Am. Chem. Soc. 2004, 126, 3688, and references therein.
[7] Methylenecyclopropanes had previously been prepared by base-
promoted isomerization of cyclopropenes. Variants of that
reaction involve capture by electrophiles.[4a,7c] The method
presented here is distinct because it involves nucleophilic
addition to the alkene. For isomerization approaches to cyclo-
propenes, see references [4a], [6c], and: a) R. Kꢀster, S. Arora, P.
Binger, Angew. Chem. 1969, 81, 64 2;Angew. Chem. Int. Ed.
Engl. 1969, 8, 205; b) M. Vincens, C. Dumont, M. Vidal,
Tetrahedron 1981, 37, 2683; c) A. Padwa, M. W. Wannamaker,
Tetrahedron 1991, 47, 6139; d) M. Vidal, M. Vincens, P. Arnaud,
Bull. Soc. Chim. Fr. 1972, 665; e) A. A. Formanovskii, L. I.
Leonova, N. I. Yakushkina, M. Bakhbukh, Y. K. Grishin, I. G.
Bolesov, Zh. Org. Khim. 1977, 13, 1883; A. A. Formanovskii,
L. I. Leonova, N. I. Yakushkina, M. Bakhbukh, Y. K. Grishin,
I. G. Bolesov, J. Org. Chem. USSR (Engl. Transl.) 1977, 13, 1745.
[8] There was a single example of palladium-catalyzed nucleophilic
substitution on a cyclopropenyl methyl ester to give a methyl-
enecyclopropane in 27% yield (as the minor regioisomer of the
reaction); see: a) H. Nüske, S. Brꢁse, A. de Meijere, Synlett 2000,
1467. Recently, a report appeared that describes the addition of
soft nucleophiles to a chiral cyclopropene with a bromine atom
at the allylic position. Complementary to the work reported
here, the facial control in that work is determined by steric
considerations; see: b) R. A. Weatherhead-Kloster, E. J. Corey,
Org. Lett. 2006, 8, 171.
Scheme 3. Reversal of regioselectivity starting from trityl ether 5.
was included, but the formation of 6 still predominated (4.5:1
ratio of 6:3c) under conditions that were identical to those
used to form 3c from 1b as described in Table 1.
In summary, general conditions were described for the
regio- and diastereoselective synthesis of methylenecyclopro-
panes from common intermediate precursors. The reaction is
counterion-dependent and requires more than one equivalent
of Grignard reagent. These observations suggested a Lewis
acidic role for the magnesium reagent. This hypothesis was
subsequently used to design experiments that reverse the
regioselectivity of the nucleophilic delivery. Efforts are
currently being made to apply these reactions in target-
directed synthesis.
Received: February 9, 2006
Published online: May 9, 2006
Keywords: chirality · diastereoselectivity · regioselectivity ·
.
small ring systems · strained molecules
[1] Reviews on methylenecyclopropanes: a) A. Brandi, A. Goti,
Chem. Rev. 1998, 98, 589; b) M. S. Baird, T. Schmidt in
Carbocyclic Three-Membered Ring Compounds (Ed.: A.
de Meijere) Georg Thieme, Stuttgart, 1996, p. 114; c) M. Laut-
ens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49; d) A. Brandi, S.
Cicchi, F. M. Cordero, A. Goti, Chem. Rev. 2003, 103, 1213; e) P.
Binger, H. M. Buch, Top. Curr. Chem. 1987, 135, 77; f) B. M.
Trost, Angew. Chem. 1986, 98, 1; Angew. Chem. Int. Ed. Engl.
1986, 25, 1.
[9] The reaction of 1 (where R = Me, R’’ = Ph; see Table 1) with
MeMgBr still gave 3c as the major product (ca. 55%), but with
significant contamination by the diasteromeric product
(ca. 15%) and two regioisomeric products (ca. 30%).
[10] A reaction was conducted that was similar to the second entry in
Table 2, with the modification that four equivalents of MgBr2
were added. After one hour, the reaction was quenched, and the
yield of the corresponding methylenecyclopropane was mea-
[2] a) R. D. Bach, O. Dmitrenko, J. Am. Chem. Soc. 2004, 126, 4444;
b) K. B. Wiberg, Angew. Chem. 1986, 98, 312; Angew. Chem. Int.
Ed. Engl. 1986, 25, 312.
1
sured to be 16% by analysis of the crude product by H NMR
spectroscopy.
[3] Selected examples of stereospecific transformations of methyl-
enecyclopropanes: a) M. Lautens, Y. Ren, P. H. M. Delanghe, J.
Am. Chem. Soc. 1994, 116, 8821; b) R. J. Boffey, W. G. Whitting-
ham, J. D. Kilburn, J. Chem. Soc. Perkin Trans. 1 2001, 487.
[4] Key references to enantiomerically enriched methylcyclopro-
panes: a) E. Zohar, A. Stanger, I. Marek, Synlett 2005, 2239, and
reference [9] therein; b) M. Lautens, P. H. M. Delanghe, J. Am.
Chem. Soc. 1994, 116, 8526; c) M. Lautens, P. H. M. Delanghe, J.
Org. Chem. 1993, 58, 5037; d) A. de Meijere, L. Wessjohann,
Synlett 1990, 20; e) B. Achmatowicz, M. M. Kabat, J. Krajewski,
J. Wicha, Tetrahedron 1992, 48, 10201; f) S. Ramaswamy, K.
Prasad, O. Repic, J. Org. Chem. 1992, 57, 6344; g) J. E. Baldwin,
R. M. Adlington, D. Beddington, A. T. Russell, J. Chem. Soc.
Chem. Commun. 1992, 1249; h) T. Chevtchouk, J. Ollivier, J.
Salaün, Tetrahedron: Asymmetry 1997, 8, 1005.
[5] a) M. P. Doyle, M. Protopopova, P. Müller, D. Ene, E. A.
Shapiro, J. Am. Chem. Soc. 1994, 116, 84 92; b) H. M. L.
Davies, G. H. Lee, Org. Lett. 2004, 6, 1233; c) L.-a. Liao, F.
Zhang, O. Dmitrenko, R. D. Bach, J. M. Fox, J. Am. Chem. Soc.
2004, 126, 4490; d) L.-a. Liao, F. Zhang, N. Yan, J. A. Golen,
J. M. Fox, Tetrahedron 2004, 60, 1803; e) L.-a. Liao, N. Yan, J. M.
Fox, Org. Lett. 2004, 6, 4937; f) S. Chuprakov, M. Rubin, V.
Gevorgyan, J. Am. Chem. Soc. 2005, 127, 3714; g) Y. Lou, M.
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 3960 –3962