J. Spencer et al. / Tetrahedron Letters 53 (2012) 1656–1659
1659
Table 3
Supplementary data
Displacement of hCB1 and hCB2 at 10À5 M concentration
Supplementary data (experimental and analytical data (1H, 13C
spectra, MS, elemental analysis) for compounds are provided, as
well as X-ray crystallography) associated with this article can be
HO
HO
OH
References and notes
CP 55,940
1. See, for example: (a) Wang, B.; Hansen, T. M.; Weyer, L.; Wu, D.; Wang, T.;
Christmann, M.; Lu, Y.; Ying, L.; Engler, M. M.; Cink, R. D.; Lee, C. S.; Ahmed, F.;
Forsyth, C. J. J. Am. Chem. Soc. 2011, 133, 1506–1516; (b) Bagley, M. C.; Dale, J.
W.; Meritt, E. A.; Xiong, X. Chem. Rev. 2005, 105, 685–714; (c) Jin, Z. Nat. Prod.
Rep. 2011, 28, 1143–1191.
Entry
Oxazole
Ki (Â10À5 M)
hCB2
hCB1
1
2
3
5f
7f
7g
1.42 1.07
1.87 1.01
10.18 2.51
—
2. (a) Thompson, M. J.; Adams, H.; Chen, B. J. Org. Chem. 2009, 74, 3856–3865; (b)
Verrier, C.; Martin, T.; Hoarau, C.; Marsais, F. J. Org. Chem. 2008, 73, 7383–7386;
(c) Ohnmacht, S. A.; Mamone, P.; Culshaw, A. J.; Greaney, M. F. Chem. Commun.
2008, 1241–1243; (d) Zhang, J.; Coqueron, P. Y.; Vors, J. P.; Ciufolini, M. A. Org.
Lett. 2010, 12, 3942–3945; (e) Strotman, N. A.; Chobanian, H. R.; Guo, Y.; He, J.;
Wilson, J. E. Org. Lett. 2010, 12, 3578–3581; (f) Shi, B.; Blake, A. J.; Lewis, W.;
Campbell, I. B.; Judkins, B. D.; Moody, C. J. J. Org. Chem. 2010, 75, 152–161; (g)
Shibahara, F.; Yamaguchi, E.; Murai, T. J. Org. Chem. 2011, 76, 2680–2693; (h)
Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858–8859; (i) Wu, B.;
Wen, J.; Zhang, J.; Li, J.; Xiang, Y.-Z.; Yu, X.-Q. Synlett 2009, 500–504.
3. (a) Delvare, C.; Harris, C. S.; Hennequin, L.; Koza, P.; Lambert-van der Brempt,
C.; Pelleter, J.; Willerval, O. ACS Comb. Sci. 2011, 13, 449–452; (b) Thomas, G. L.;
Wyatt, E. E.; Spring, D. R. Curr. Opin. Drug Discovery Dev. 2006, 9, 700–712; (c)
Dandapani, S.; Marcaurelle, L. A. Curr. Opin. Chem. Biol. 2010, 14, 362–370.
4. (a) Freeman, F.; Kim, D. Tetrahedron Lett. 1989, 30, 2631–2632; For related
systems, see: (b) Nolt, M. B.; Smiley, M. A.; Varga, S. L.; McClain, R. T.;
Wolkenberg, S. E.; Lindsley, C. W. Tetrahedron 2006, 62, 4698–4704.
5. (a) Spencer, J. Fut. Med. Chem. 2010, 2, 161–168. and references therein; (b)
Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250–6284. and references therein.
6. This reaction may depend on the volatility of the acid chloride used: acetyl
chloride (bp = 52 °C) generally gave variable yields (which were usually better
when using rubber sealed septa for the microwave vessel) whereas
cyclpropane carbonyl chloride (bp = 119 °C) and cyclohexyl carbonyl chloride
(bp = 180 °C) gave better yields. We thank the reviewer for raising this and
other important points.
7.46 1.99
attempt was made to synthesise 9c via an SNAr reaction without
any Pd catalyst source, but the yield of the reaction was very poor
(20%, neat amine). However, using a Pd(OAc)2 precatalyst, com-
pounds 9c1–c3 were obtained in moderate yields as white solids.
A related aminocarbonylation reaction was performed with
molybdenum hexacarbonyl as a solid source of carbon monoxide,
Herrmann–Beller’s catalyst as a source of Pd(0) and DBU as base,
to convert 8c into 10c.15,16 This reaction was found to also give a
Buchwald–Hartwig amination side product 9c3 (as observed by
1H NMR and by TLC). The 1H NMR spectrum of compound 10c
was very distinct to that of 9c3, for example in amide 10c the
piperazine group displays 4H at d = 3.70 and 4H at d = 3.55 due
to the presence of a carbonyl group. In contrast, in 9c3 the pipera-
zine signals integrate as a multiplet for 8H at d = 3.47 in its 1H NMR
spectrum. Finally, we decided to acylate a selected number of
amine derivatives in our oxazole library to evaluate the effect of
converting a basic amine into a neutral amide. The addition of
1.2 equiv of an acid chloride to 4 using PS-NMM (polymer sup-
ported base) led to the amide derivatives 11 in good yields.
Given our interest in cannabinoid receptor ligands,17 we
screened the oxazole library against (human) hCB1 and hCB2
7. Miles, K. C.; Mays, S. M.; Southerland, B. K.; Auvil, T. J.; Ketcha, D. M. Arkivoc
2009, xiv, 181–190.
8. (a) Alexiou, P.; Demopoulos, V. J. J. Med. Chem. 2010, 53, 7756–7766; (b)
Hadden, M.; Goodman, A.; Guo, C.; Guzzo, P. R.; Henderson, A. J.; Pattamana, K.;
Ruenz, M.; Sargent, B. J.; Swenson, B.; Yet, L.; Liu, J.; He, S.; Sebhat, I. K.; Lin, L.
S.; Tamvakopoulos, C.; Peng, Q.; Kan, Y.; Palyha, O.; Kelly, T. M.; Guan, X. M.;
Metzger, J. M.; Reitman, M. L.; Nargund, R. P. Bioorg. Med. Chem. Lett. 2010, 20,
2912–2915; (c) Biot, C.; Bauer, H.; Schirmer, R. H.; Davioud-Charvet, E. J. Med.
Chem. 2004, 47, 5972–5983.
9. Demko, Z. P.; Sharpless, K. B. Org. Lett. 2001, 3, 4091–4094.
10. Lukyanov, S. M.; Bliznets, I. V.; Shorshnev, S. V.; Aleksandrov, G. G.; Stepanov,
A. E.; Vasil’ev, A. A. Tetrahedron 2006, 62, 1849–1863.
11. Bauer, M.; Harris, R. K.; Rao, R. C.; Apperley, D. C.; Rodger, C. A. J. Chem. Soc.,
Perkin Trans. 2 1998, 475–481.
12. Jones, R. V.; Godorhazy, L.; Varga, N.; Szalay, D.; Urge, L.; Darvas, F. J. Comb.
Chem. 2006, 8, 110–116.
13. Ito, K.; Suzuki, T.; Sakamoto, Y.; Kubota, D.; Inoue, Y.; Sato, F.; Tokito, S. Angew.
Chem., Int. Ed. 2003, 42, 1159–1162.
14. See for example: (a) Heo, J. N.; Song, Y. S.; Kim, B. T. Tetrahedron Lett. 2005, 46,
4621–4625; (b) Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1144–1157;
(c) Sheng, Q.; Hartwig, J. F. Org. Lett. 2008, 10, 4109–4112.
receptors at a 10 lM concentration against the reference com-
pound ([3H]-CP-55,940). Three compounds, 5f, 7f and 7g displayed
moderate affinity towards these receptors and were re-evaluated
affording high micromolar affinities (Table 3).
In summary, a diverse oxazole library has been synthesised
using mainly microwave mediated chemistry.18 Modification
around the oxazole motif can occur at positions-2, -4 and -5 afford-
ing a number of ‘rule of three’ fragments, which will be further
elaborated in due course to establish structure–activity relation-
ships (SAR).19 Many of the oxazoles described herein have been
structurally characterised in the solid state.
15. For recent examples, see: (a) Begouin, A.; Queiroz, M. Eur. J. Org. Chem. 2009,
2820–2827; (b) Cardullo, F.; Donati, D.; Merlo, G.; Paio, A.; Petricci, V.; Taddei,
M. Synlett 2009, 47–50; (c) Letavic, M. A.; Ly, K. S. Tetrahedron Lett. 2007, 48,
2339–2343.
16. Recently reported aminocarbonylation processes are Pd-free, see for example:
(a) Ren, W.; Yamane, M. J. Org. Chem. 2010, 75, 8410–8415; (b) Roberts, B.;
Liptrot, D.; Alcaraz, L.; Luker, L. T.; Stocks, M. J. Org. Lett. 2010, 12, 4280–4283.
17. El Bakali, J.; Muccioli, G. G.; Renault, N.; Pradal, D.; Body-Malapel, M.; Djouina,
M.; Hamtiaux, L.; Andrzejak, V.; Chavatte, P.; Desreumeaux, P.; Lambert, D. M.;
Millet, R. J. Med. Chem. 2010, 53, 7918–7931.
18. For some of our earlier microwave chemistry, see: (a) Spencer, J.; Patel, H.;
Rathnam, R. P.; Nazira, A. Tetrahedron 2008, 64, 10195–10200; (b) Spencer, J.;
Nazira, A.; Patel, H.; Rathnam, R. P.; Verma, J. Synlett 2007, 2557–2558.
19. For recent reviews, see: (a) Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A. J.
J. Med. Chem. 2008, 51, 3661–3680; (b) de Kloe, G. E.; Bailey, D.; Leurs, R.; de
Esch, I. J. P. Drug Discovery Today 2009, 14, 630–646.
Acknowledgements
The EPSRC Mass Spectrometry Unit (Swansea University) is
acknowledged for HRMS measurements. The EPSRC is thanked
for funding the X-ray crystallography unit. We are grateful to John-
son Matthey for a loan of precious metal salts (Pd), Avexa for finan-
cial assistance for a Ph.D. studentship (H.P.) and Greenwich
University, GRE, and the School of Science are thanked for the pur-
chase of CHN instrumentation.