1330
L. Molina et al.
LETTER
(4) (a) Moreno-Vargas, A. J.; Fernández-Bolaños, J. G.;
Fuentes, J.; Robina, I. Tetrahedron Lett. 2001, 42, 1283.
(b) Moreno-Vargas, A. J.; Jiménez-Barbero, J.; Robina, I. J.
Org. Chem. 2003, 68, 4138.
(5) (a) Silverman, D. N.; Lindskog, S. Acc. Chem. Res. 1988, 21,
30. (b) Greener, B.; Rose, J. Chem. Commun. 1999, 2361.
(c) Lehn, J. M. Supramolecular Chemistry: Concepts and
Perspectives; VCH: Weinheim, 1995.
1 H, J1¢,2¢ = 7.3 Hz, H-1¢), 4.02 (m, 1 H, H-2¢), 3.76 (dd, 1 H,
J
3¢a,3¢b = 11.5 Hz, J3¢a,2¢= 3.4 Hz, H-3¢a), 3.72 (dd, 1 H,
J
3¢b,2¢ = 5.2 Hz, H-3¢b), 2.60 (s, 3 H, CH3) ppm. 13C NMR
(75.4 MHz, CDCl3, 298 K): d = 163.5 (CO), 160.4, 147.5 (C-
2, C-5), 135.9, 128.6, 128.3, 128.2 (6 C-arom.), 114.2 (C-3),
110.9 (C-4), 71.9 (C-2¢), 66.2 (CH2Ph), 62.9 (C-3¢), 59.9 (C-
1¢), 14.3 (CH3) ppm. HRMS (CI): m/z calcd for C16H18N3O5
+ H+: 332.1246; found: 332.1236.
(6) Cleland, W. W.; Kreevoy, M. M. Science 1994, 264, 1887.
(7) (a) Clerici, F.; Gelmi, M. L.; Gambini, A. J. Org. Chem.
1999, 64, 5764. (b) Clerici, F.; Gelmi, M. L.; Gambini, A. J.
Org. Chem. 2000, 65, 6138. (c) Clerici, F.; Gelmi, M. L.;
Gambini, A.; Nava, D. Tetrahedron 2001, 57, 6429.
(d) Avenoza, A.; Busto, J. H.; Canal, N.; Peregrina, J. M. J.
Org. Chem. 2005, 70, 330. (e) Avenoza, A.; Busto, J. H.;
Canal, N.; Peregrina, J. M.; Pérez-Fernández, M. Org. Lett.
2005, 7, 3597.
(8) (a) Sun, X.-L.; Kai, T.; Takayanagi, H.; Furuhata, K. Synlett
1999, 1399. (b) Bushey, M. L.; Haukaas, M. H.; O’Doherty,
G. A. J. Org. Chem. 1999, 64, 2984. (c) Saaby, S.; Bayón,
P.; Aburel, P. S.; Jørgensen, K. A. J. Org. Chem. 2002, 67,
4352. (d) Miyata, O.; Iba, R.; Hashimoto, J.; Naito, T. Org.
Biomol. Chem. 2003, 1, 772.
(18) Selected data for compound 9: [a]D20 +25 (c 2.62, CH2Cl2).
1H NMR (300 MHz, CDCl3, 298 K): d = 7.42–7.36 (m, 10
H, H-arom.), 6.67 (s, 1 H, H-4), 5.30 (s, 2 H, CH2Ph), 4.75
(t, 1 H, J1¢,2¢a = J1¢,2¢b = 6.5 Hz, H-1¢), 4.56 (d, 2 H, H-2¢a and
H-2¢b), 3.55 (q, 3 H, JCH,F = 1.2 Hz, CH3O), 2.58 (s, 3 H,
CH3) ppm. 13C NMR (75.4 MHz, CDCl3, 298 K): d = 166.2
(CO), 163.1 (CO), 160.5, 146.0 (C-2, C-5), 131.8–127.2 (12
C, C-arom.), 123.1 (q, 1 C, 1JC,F = 288, CF3), 114.2 (C-3),
110.5 (C-4), 84.7 [q, 1 C, 2JC,F = 28.2 Hz, (C(OMe)(CF3)Ph],
66.2 (CH2Ph), 65.0 (C-2¢), 56.5 (C-1¢), 55.5 (OCH3), 13.9
(CH3) ppm.
(19) Koole, L. H.; Moody, H. M.; Broeders, N. L. H. L.;
Quaedflieg, P. J. L. M.; Kuijpers, W. H. A.; van Genderen,
M. H. P.; Coenen, A. J. J. M.; van der Wal, S.; Buck, H. M.
J. Org. Chem. 1989, 54, 1657.
(9) For a review on a-furfuryl amine derivatives, see: Zhou,
W.-S.; Lu, Z.-H.; Xu, Y.-M.; Liao, L.-X.; Wang, Z.-M.
Tetrahedron 1999, 55, 11959.
(20) Experimental Procedure for the Preparation of Fmoc-
Activated Amino Acid Derivative 16 from 1.
To a stirred mixture of 1 (26 mg, 0.138 mmol) in dry
pyridine (2 mL) at 0 °C, TMSCl (54 mL, 0.414 mmol) was
dropped and the reaction mixture stirred for 45 min at r.t.
Then the reaction mixture was cooled to 0 °C, 9-fluorenyl-
methoxycarbonyl chloride (46 mg, 0.18 mmol) was added
and the mixture stirred for 1.5 h at r.t. Afterwards, H2O (0.1
mL) was added, the mixture stirred for 1 h at r.t., and then
evaporated to give 15 that was used in the next step without
any purification. Crude 15 was dissolved in DMF, then
DIEA (53 mL, 0.3 mmol) and PyBOP (88 mg, 0.168 mmol)
were added. The mixture was stirred for 1 h at r.t., then the
solution was evaporated in vacuo. The resulting residue was
purified by column chromatography (EtOAc–PE, 1:1) to
(10) (a) Ciufolini, M. A.; Wood, C. W. Tetrahedron Lett. 1986,
27, 5085. (b) Ciufolini, M. A.; Hermann, C. Y. W.; Dong,
Q.; Shimizu, T.; Swaminathan, S.; Xi, N. Synlett 1998, 105.
(11) (a) McMillan, J. B.; Molinski, T. F. Org. Lett. 2002, 4, 1883.
(b) Willis, M. C.; Cutting, G. A.; Piccio, V. J.-D.; Durbin, M.
J.; John, M. P. Angew. Chem. Int. Ed. 2005, 44, 1543.
(c) Amino Acids, Peptides and Proteins, Vol.1-28; Special
Periodical Reports, Chemistry Society: London, 1968-1995.
(12) For similar condensations between aldohexoses and
ketohexoses with b-dicarbonyl compounds see: García-
González, F. Adv. Carbohydr. Chem. 1956, 11, 97.
(13) Misra, A. K.; Agnihotri, G. Carbohydr. Res. 2004, 339,
1381.
20
give 16 (57 mg, 0.108 mmol, 78%) as a white solid. [a]D
(14) (a) Moreno-Vargas, A. J.; Robina, I.; Demange, R.; Vogel,
P. Helv. Chim. Acta 2003, 86, 1894. (b) Robina, I.; Moreno-
Vargas, A. J.; Fernández-Bolaños, J. G.; Fuentes, J.;
Demange, R.; Vogel, P. Bioorg. Med. Chem. Lett. 2001, 11,
2555.
(15) (a) For the same reaction on a similar but unstable cyclic
sulfite giving only one diasteroisomer, see ref. 8d. (b) Seki,
M.; Mori, K. Eur. J. Org. Chem. 1999, 2965.
+38 (c 0.84, CH2Cl2). 1H NMR (300 MHz, CDCl3, 298 K):
d = 7.57–7.27 (m, 12 H, H-arom.), 6.74 (s, 1 H, H-4), 5.56
(d, 1 H, JNH,1¢ = 7.5 Hz, NHFmoc) 4.90 (br s, 1 H, H-1¢), 4.51
(d, 2 H, J = 6.5 Hz, CH2 of Fmoc), 4.22 (t, 1 H, CH of Fmoc),
3.94 (br m, 2 H, H-2¢a and H-2¢b), 2.62 (CH3) ppm.
13C NMR (75.4 MHz, CDCl3, 298 K): d = 163.4 (CO), 159.5
(C-2), 156.1 (CO of Fmoc), 152.3 (C-5), 143.7, 143.4, 141.4,
128.8, 127.8, 127.1, 124.9, 120.4, 120.0, 107.3 (18 C, C-
arom.), 108.8 (C-3), 108.4 (C-4), 67.0 (CH2 of Fmoc), 63.3
(C-2¢), 50.9 (C-1¢), 47.2 (CH of Fmoc), 14.2 (CH3).
(21) The OBt esters of protected amino acids are not isolable and
must be generated in situ. Only less reactive OPfp esters are
commercially available, see: Novabiochem,® 2004/5
catalogue.
(16) For reviews on cyclic sulfite reactivity, see: (a) Lohray, B.
B. Synthesis 1992, 1035. (b) Byun, H.-S.; He, L.; Bittman,
R. Tetrahedron 2000, 56, 7051.
(17) Selected data for compound 7: [a]D20 +99 (c 0.98, CH2Cl2).
1H NMR (300 MHz, CDCl3, 298 K): d = 7.40–7.28 (m, 5 H,
H-arom.), 6.75 (s, 1 H, H-4), 5.29 (s, 2 H, CH2Ph), 4.56 (d,
Synlett 2006, No. 9, 1327–1330 © Thieme Stuttgart · New York