Giubellina et al.
SCHEME 2
2-methyl-3-phenyl-2H-azirine and 2-chloromethylenemalono-
nitrile derivatives gave rise to mixtures of chlorinated cis- and
trans-aziridines.20 Finally, 2,2-dimethyl-3-phenyl-2H-azirines
reacted with phthalimidoacetyl chloride in benzene to give
2-chloroaziridines in 62% yield.21 2-Haloaziridines were also
generated in poor yield by dichlorocarbene addition to ben-
zylideneamines, followed by chlorine extrusion induced by
methyllithium22 or lithium aluminum hydride (28% yield).23
Dehalogenation of 2,2-dihalo-1-phenylaziridines was also per-
formed with tri-n-butyltin hydride to give monohalogenated
aziridines.24 Nitrene chemistry was applied to the synthesis of
2-chloroaziridines, as exemplified for 1-ethoxycarbonyl-2-
chloroaziridines which were generated from the addition of
ethoxycarbonylnitrene, produced by thermolysis of the corre-
sponding azide, to vinyl chlorides.25 The reaction of (Z)-N-
trifluoromethylacetimidoyl fluoride with diazomethane afforded
N-trifluoromethyl-2-fluoroaziridines.26 1-Alkyl-2-sulfonylaziri-
dines incorporated a halogen at the 2-position when treated with
carbon tetrahalides (CCl4 or CBr4) in tert-butyl alcohol in the
presence of potassium hydroxide.27 In a similar way, aziridi-
nylphosphonates reacted with BuLi leading to 2-lithiated species
which were trapped with carbon tetrachloride to give 2-chlo-
roaziridinylphosphonates in good yields.28 A mixture of cis- and
trans-2-bromoaziridines was synthesized in poor yield (25%)
when thiohydroxamic acid anhydride was photolyzed in neat
CBrCl3.29 This protocol was applied to the synthesis of
2-bromoaziridine derivatives, which were used in the key step
of the synthesis of (+)-9a-desmethoxymitomycin A and mito-
mycin K.30
SCHEME 3
Therefore, the aza-Darzens reaction can still be considered a
useful and not fully investigated tool for the construction of
three-membered azaheterocycles, i.e., functionalized aziridines.
Although some acid-catalyzed methods for the aza-Darzens-
type reaction are known,9 the most common route involves the
use of a base.
In the present paper, the reactivity of R,R-dichloroketimines
6 and N-sulfonylaldimines 7 leading to the synthesis of 2-chloro-
2-imidoylaziridines 8 was investigated in a novel type of the
aza-Darzens-type reaction (Scheme 3).
These reactions should provide the corresponding 2-chloro-
2-imidoylaziridines 8 which represent a relevant example of
fairly stable 2-haloaziridines. The synthesis of 2-haloaziridines
has attracted the interest of organic chemists since the early
60s because these 2-heteroatom-substituted strained rings are
effective building blocks. Approaches to 2-chloroaziridines
included the reaction of 2H-azirines with hydrogen chloride or
acid chlorides (benzoyl chloride, acetyl chloride, ...), resulting
in the formation of mixtures of cis- and trans-aziridines.16 The
latter aziridines were used as starting products in the synthesis
of functionalized oxazoles17,18 and oxazolines.16,19 Reactions of
Results and Discussion
A preceding Darzens-type reaction of R-chloroimines with
ketones and aldehydes enabled the synthesis of 2-imidoylepoxide
derivatives.2 Remarkable to note is the lack of self-condensation
and side-reaction products during the deprotonation of R-chlo-
rinated and R,R-dichlorinated imines, a clear advantage in
contrast to, for instance, R-chlorinated oximes.31
Knowing that the condensation reaction of R-chlorinated
imine anions with an activated imine (e.g., N-sulfonylimine)
(9) (a) Casarrubios, L.; Pe´rez, J. A.; Brookhart, M.; Templeton, J. L. J.
Org. Chem. 1996, 61, 8358. (b) Xie, W.; Fang, J.; Li, J.; Wang, P. G.
Tetrahedron 1999, 55, 12929. (c) Antilla, J. C.; Wulff, D. W. J. Am. Chem.
Soc. 1999, 121, 5099. (d) Antilla, J. C.; Wulff, D. W. Angew. Chem., Int.
Ed. 2000, 39, 4519. (e) Williams, A. L.; Johnston, J. N. J. Am. Chem. Soc.
2004, 126, 1612.
(10) (a) Davis, F. A.; McCoull, W. Tetrahedron Lett. 1999, 40, 249. (b)
Davis, F. A.; Wu, Y.; Hongxing, Y.; McCoull, W.; Prasad, K. R. J. Org.
Chem. 2003, 68, 2410. (c) Davis, F. A.; Ramachandar, T.; Wu, Y. J. Org.
Chem. 2003, 68, 6894.
(18) (a) Schmid, H.; Gilgen, P.; Heimgartner, H. HelV. Chim. Acta 1974,
57, 1393. (b) Sato, S.; Kato, H.; Ohta, M. Bull. Chem. Soc. Jpn. 1967, 40,
2938.
(19) For recent reviews on the rearrangement of 1-acylaziridines to
oxazole derivatives, see: (a) Cardillo, G.; Gentilucci, L.; Tolomelli, A.
Aldrichimica Acta 2003, 36, 39. (b) Hu, X. E. Tetrahedron 2004, 60, 2701.
(20) Lee, S. M.; Lai, T. F.; Sammes, M. P. J. Chem. Res., Synop. 1992,
266.
(11) Kim, D. Y.; Suh, K. H.; Choi, J. S.; Mang, J. Y. Synth. Commun.
2000, 30, 87.
(21) Eremeev, A. V.; El’kinson, R. S.; Imuns, V. Khim. Geterotsikl.
Soedin. 1981, 643; Chem. Abstr. 1981, 95, 97505.
(22) (a) Deyrup, J. A.; Greenwald, R. B. J. Am. Chem. Soc. 1965, 87,
4538. (b) Deyrup, J. A.; Greenwald, R. B. Tetrahedron Lett. 1966, 7, 5091.
(23) Takahashi, M.; Takada, T.; Sakagami, T. J. Heterocycl. Chem. 1987,
24, 797.
(24) Hiroki, Y.; Kikui, J.; Teramura, K.; Ando, T. J. Org. Chem. 1976,
41, 3794.
(25) Pellacani, L.; Persia, F.; Tardella, P. A. Tetrahedron Lett. 1980,
21, 4967.
(26) Coe, P. L.; Holton, A. G. J. Fluorine Chem. 1977, 10, 553.
(27) Galliot, J.-M.; Gelas-Mialhe, Y.; Vessiere, R. Can. J. Chem. 1979,
57, 1958.
(28) Coutrot, P.; Elgadi, A.; Grison, C. Heterocycles 1989, 28, 1179.
(29) Ziegler, F. E.; Belema, M. J. Org. Chem. 1994, 59, 7962.
(30) (a) Ziegler, F. E.; Berlin, M. Y. Tetrahedron Lett. 1998, 39, 2455.
(b) Ziegler, F. E.; Berlin, M. Y.; Lee, K.; Looker, A. R. Org. Lett. 2000, 2,
3619.
(12) (a) Davis, F. A.; Zhou, P.; Reddy, G. V. J. Org. Chem. 1994, 59,
3243. (b) Davis, F. A.; Liu, H.; Reddy, G. V. Tetrahedron Lett. 1996, 37,
5473. (c) Davis, F. A.; Reddy, G. V.; Liang, C.-H. Tetrahedron Lett. 1997,
38, 5139. (d) Davis, F. A.; Liu, H.; Zhou, P.; Fang, T.; Reddy, G. V.; Zhang,
Y. J. Org. Chem. 1999, 64, 7559. (e) Davis, F. A.; Zhang, Y.; Rao, A.;
Zhang, Z. Tetrahedron 2001, 57, 6345. (f) Davis, F. A.; Deng, J.; Zhang,
Y.; Haltiwanger, R. C. Tetrahedron 2002, 58, 7135.
(13) (a) Coutrot, P.; El Gadi, A. J. Organomet. Chem. 1985, 280, 11.
(b) Wartski, L. J. Chem. Soc., Chem. Commun. 1977, 602.
(14) Takagi, R.; Kimura, J.; Shinohara, Y.; Ohba, Y.; Takezono, K.;
Hiraga, Y.; Koijma, S.; Ohkata, K. J. Chem. Soc., Perkin Trans. 1 1998,
689.
(15) Vedejs, E.; Piotrowski, D. W.; Tucci, F. C. J. Org. Chem. 2000,
65, 5498.
(16) (a) Fowler, F. W.; Hassner, A. J. Am. Chem. Soc. 1968, 90, 2875.
(b) Hassner, A.; Burke, S. S.; Jesse, C. J. Am. Chem. Soc. 1975, 97, 4692.
(17) Palacios, F.; Ochoa de Retana, A. M.; Gil, J. I.; Alonso, J. M.
Tetrahedron 2004, 60, 8937.
(31) Tsuritani, T.; Yagi, K.; Shinokubo, H.; Oshima, K. Angew. Chem.,
Int. Ed. 2003, 42, 5613.
5882 J. Org. Chem., Vol. 71, No. 16, 2006