Communications
Scheme 8. Completion of the preparation of (ꢀ)-dehaloperophorami-
dine: a) KOH, MeOH, H2O, 1008C, 6 h (71%); MnO2, CH2Cl2, RT,
0.5 h (64%).
Received: April 1, 2006
Published online: May 30, 2006
Keywords: communesin · cyclization · natural products ·
.
perophoramidine · thioindoles
[1] For recent reviews, see: a) W. Gul, M. T. Hamann, Life Sci. 2005,
78, 442; b) J. W. Blunt, B. R. Copp, M. H. G. Munro, P. T.
Northcote, M. R. Prinsep, Nat. Prod. Rep. 2006, 23, 26, and
references therein.
[2] S. M. Verbitski, C. L. Mayne, R. A. Davis, G. P. Concepcion,
C. M. Ireland, J. Org. Chem. 2002, 67, 7124.
Scheme 7. Conversion of pentacycle 16 into imidate cyclization precur-
[3] J. R. Fuchs, R. L. Funk, J. Am. Chem. Soc. 2004, 126, 5068.
[4] J.-B. Denault, G. S. Salvesen, Chem. Rev. 2002, 102, 4489.
[5] a) J. D. Rainier, A. R. Kennedy, J. Org. Chem. 2000, 65, 6213;
b) J. D. Rainier, A. R. Kennedy, E. Chase, Tetrahedron Lett.
1999, 40, 6325.
[6] a) A. R. Kennedy, M. H. Taday, J. D. Rainier, Org. Lett. 2001, 3,
2407; b) A. N. Novikov, A. R. Kennedy, J. D. Rainier, J. Org.
Chem. 2003, 68, 993; c) A. M. Nyong, J. D. Rainier, J. Org. Chem.
2005, 70, 746.
sor 33: a) OsO4, NaIO4, NaOAc, THF, H2O, 08C, 3 h (72%);
b) CH3NH2·HCl, NaOAc, MeOH, RT, 7 h; NaBH4, 08C, 1 h; c) Boc2O,
NEt3, THF, 08C!RT, 12 h (82%, 2 steps); d) NaBH4, EtOH, 08C!RT,
18 h (89%); e) TFA, CH2Cl2, 08C!RT, 8 h; f) Boc2O, NEt3, THF (97%,
2 steps); g) Li, NH3, THF, NH4Cl, ꢁ788C; h) ClCO2CH3, pyridine,
CH2Cl2, temp, time (88%, 2 steps); i) Me3OBF4, NaHCO3, CH2Cl2, 08C,
1 h (81%).
[7] For the use of 2-thioindoles to generate indolines with quater-
nary substitution at C3, see: K. S. Feldman, D. B. Vidulova, A. G.
Karatjas, J. Org. Chem. 2005, 70, 6429.
[8] Our attempts to employ thionium ylide rearrangements to the
perophoramidine skeleton were unsuccessful; for examples of
this reaction, see reference [6].
[9] A. Numata, C. Takahashi, Y. Ito, T. Takada, K. Kawai, Y. Usami,
E. Matsumura, M. Imachi, T. Ito, T. Hasegawa, Tetrahedron Lett.
1993, 34, 2355.
[10] A. R. Kennedy, PhD Dissertation, University of Arizona, 2001.
[11] See R. B. Woodward, M. P. Cava, W. D. Ollis, A. Hunger, H. U.
Daeniker, K. Schenker, Tetrahedron 1963, 19, 247.
[12] J. F. M. Da Silva, S. J. Garden, A. C. Pinto, J. Braz. Chem. Soc.
2001, 12, 273.
[13] W. E. Stewart, T. H. Siddall III, Chem. Rev. 1970, 70, 517.
[14] G. D. Artman III, S. M. Weinreb, Org. Lett. 2003, 5, 1523.
[15] We also explored a number of other basic and acidic conditions
without success.
[16] An examination of molecular models of 21 and 24 indicates that
approach of the amine onto the C24 imidate carbon is blocked
by the C18 proton; the formation of 25 allows the aromatic ring
to rotate, thus alleviating this problem.
[17] When the aminal was protected with a Boc group, reductive
removal of the benzyl group resulted in the decomposition of the
perophoramidine ring system.
To complete the synthesis of dehaloperophoramidine, it
remained to remove the methyl carbamate and oxidize the
aminal to the corresponding amidine. This occurred unevent-
fully; exposure of 34 to KOH and MeOH followed by
oxidation with MnO2 under the conditions developed by
Fuchs and Funk gave (ꢀ )-dehaloperophoramidine, whose
spectral data matched the data reported by Ireland and co-
workers (Scheme 8).[2]
In conclusion, we have successfully generated (ꢀ )-deha-
loperophoramidine from a highly efficient spirocyclization
reaction of a readily available 2-thiotryptamine derivative.
We are currently examining this reaction in the synthesis of
other interesting alkaloids, including members of the com-
munesin family. These efforts will be reported in due course.
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 4317 –4320