[Zn(TEPA)Br]+ and [Zn(TEPA)]2+ (not shown) did not display
such a pH dependence. DFT calculations support the distorted
trigonal bipyramidal structure for both the bromide and hydroxide
complexes. The overall coordination geometry does not change
upon formal removal of a hydrogen atom (H+ + e−) from the
phenolic moiety of the imidazole–phenol ligand. However, a trend
in distortion away from trigonal pyramidal toward tetrahedral
geometry was found as a function of increased electron donation
from the imidazole–phenol ligand to Zn(II) along the equatorial
plane. In other words, the deprotonation of phenol results in
structural changes to the Zn(II) complex as well as an enhanced
binding strength of 8 in the gas phase.
20 J. P. Osborne, N. J. Cosper, C. M. V. Staelhandske, R. A. Scott, J. O.
Alben and R. B. Gennis, Biochemistry, 1999, 38, 4526–4532.
21 J. G. Liu, Y. Naruta, F. Tani, T. Chishiro and Y. Tachi, Chem. Commun.,
2004, 120–121.
22 K. D. Karlin and E. Kim, Chem. Lett., 2004, 33, 1226–1231.
23 K. Kamaraj, E. Kim, B. Galliker, L. N. Zakharov, A. L. Rheingold,
A. D. Zuberbuehler and K. D. Karlin, J. Am. Chem. Soc., 2003, 125,
6028–6029.
24 E. Kim, K. Kamaraj, B. Galliker, N. D. Rubie, P. Moeenne-Loccoz,
S. Kaderli, A. D. Z. Uhler and K. D. Karlin, Inorg. Chem., 2005, 44,
1238–1247.
25 S. B. Colbran and M. N. Paddon-Row, J. Biol. Inorg. Chem., 2003, 8,
855–865.
26 K. J. Lee, K. C. Joo, E.-J. Kim, M. Lee and D. H. Kim, Bioorg. Med.
Chem., 1997, 5, 1989–1998.
27 R. P. Kozyrod, J. Morgan and J. T. Pinhey, Aust. J. Chem., 1985, 38,
1147–1153.
Acknowledgements
28 (a) K. Loeffler, Chem. Ber., 1904, 37, 174; (b) J. K. Romary, R. D.
Zachariasen, J. D. Barger and H. Schiesser, J. Chem. Soc. C, 1968,
2884–2887; (c) H. J. Hoorn, P. d. Joode, W. L. Driessen and J. Reedijk,
Recl. Trav. Chim. Pays-Bas, 1996, 115, 191–197.
29 K. D. Karlin, J. C. Hayes, J. P. Hutchinson, J. R. Hyde and J. Zubieta,
Inorg. Chim. Acta, 1982, 64, L219–L220.
The authors would like to thank Dr Robert Ellenwood and Prof.
Gregory Girolami (UIUC) for their assistance with the X-ray data
analysis and Meera Raja for her help with the synthesis of 8.
This work was supported by the National Institutes of Health
(GM44911). DAP acknowledges the support of the Jane Coffin
Childs Fund for Medical Research. This work was also partially
supported by the National Computational Science Alliance under
Grant CHE300057N and utilised the IBM P690 located on the
UIUC campus.
30 Bruker AXS Inc., 1998, Madison, Wisconsin, USA.
31 A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098–3100.
32 A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
33 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter, 1988,
37, 785–789.
34 W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56,
2257–2261.
35 A. Schaefer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100,
5829–5835.
36 All calculations were performed with Gaussian 03 suite of pro-
grams.Gaussian 03, Revision B.02: M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.
Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam,
S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani,
N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.
Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.
Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O.
Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J.B. Foresman,
J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill; B. Johnson, W. Chen, M. W.
Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc., Wallingford CT,
2004.
References
1 C. Ostermeier, A. Harrenga, U. Ermler and H. Michel, Proc. Natl.
Acad. Sci. USA, 1997, 94, 10547–10553.
2 R. B. Gennis, Science, 1998, 280, 1712–1713.
3 H. Michel, Proc. Natl. Acad. Sci. USA, 1998, 95, 12819–12824.
4 D. A. Proshlyakov, M. A. Pressler and G. T. Babcock, Proc. Natl. Acad.
Sci. USA, 1998, 95, 8020–8025.
5 R. P. Pesavento and W. A. van der Donk, Adv. Protein Chem., 2001, 58,
317–385.
6 B. A. Barry and O. Einarsdottir, J. Phys. Chem. B, 2005, 109, 6972–
6981.
7 S. Yoshikawa, K. Shinzawaitoh, R. Nakashima, R. Yaono, E. Ya-
mashita, N. Inoue, M. Yao, M. J. Fei, C. P. Libeu, T. Mizushima, H.
Yamaguchi, T. Tomizaki and T. Tsukihara, Science, 1998, 280, 1723–
1729.
8 T. K. Das, C. Pecoraro, F. L. Tomson, R. B. Gennis and D. L. Rousseau,
Biochemistry, 1998, 37, 14471–14476.
9 T. Mogi, J. Mina, T. Hirano, M. Satowatanabe, M. Tsubaki, T. Uno,
H. Hori, H. Nakamura, Y. Nishimura and Y. Anraku, Biochemistry,
1998, 37, 1632–1639.
37 G. I. Elliott and J. P. Konopelski, Org. Lett., 2000, 2, 3055–3057.
38 For further details regarding the structure, see the ESI‡.
39 Y. Naruta, Y. Tachi, T. Chishiro, Y. Shimazaki and F. Tani, Acta
Crystallogr., Sect. E: Struct. Rep. Online, 2001, 57, 550–552.
40 K. D. Karlin, J. C. Hayes, S. Juen, J. P. Hutchinson and J. Zubieta,
Inorg. Chem., 1982, 21, 4106–4108.
10 K. M. McCauley, J. M. Vrtis, J. Dupont and W. A. van der Donk, J. Am.
Chem. Soc., 2000, 122, 2403–2404.
11 N. M. Okeley and W. A. van der Donk, Chem. Biol., 2000, 7, R159–
R171.
41 S. C. Rawle, A. J. Clarke, P. Moore and N. W. Alcock, J. Chem. Soc.,
Dalton Trans., 1992, 2755–2757.
12 J. P. Collman, R. Boulatov, C. J. Sunderland and L. Fu, Chem. Rev.,
2004, 104, 561–588.
42 M. M. Makowska-Grzyska, P. C. Jeppson, R. A. Allred, A. M. Arif
and L. M. Berreau, Inorg. Chem., 2002, 41, 4872–4887.
43 M. M. Ibrahim, K. Ichikawa and M. Shiro, Inorg. Chem. Commun.,
2003, 6, 1030–1034.
13 E. Kim, E. E. Chufan, K. Kamaraj and K. D. Karlin, Chem. Rev., 2004,
104, 1077–1133.
14 M. S. Rogers and D. M. Dooley, Curr. Opin. Chem. Biol., 2003, 7,
189–196.
44 A. Trosch and H. Vahrenkamp, Z. Anorg. Allg. Chem., 2001, 627, 2523–
15 M. Aki, T. Ogura, Y. Naruta, T. H. Le, T. Sato and T. Kitagawa, J. Phys.
Chem. A, 2002, 106, 3436–3444.
16 J. A. Cappuccio, I. Ayala, G. I. Elliott, I. Szundi, J. Lewis, J. P.
Konopelski, B. A. Barry and O. Einarsdottir, J. Am. Chem. Soc., 2002,
124, 1750–1760.
17 Y. Nagano, J.-G. Liu, Y. Naruta and T. Kitagawa, J. Mol. Struct., 2005,
735–736, 279–291.
18 D. A. Pratt, R. P. Pesavento and W. A. van der Donk, Org. Lett., 2005,
7, 2735–2738.
2527.
45 A. Zalkin, R. J. Sime, R. P. Dodge and D. H. Templeton, Inorg. Chem.,
1971, 10, 537–541.
46 D. T. Rosa, J. A. K. Bauer and M. J. Baldwin, Inorg. Chem., 2001, 40,
1606–1613.
47 A. Muller-Hartmann and H. Vahrenkamp, Eur. J. Inorg. Chem., 2000,
2371–2377.
48 K. Takahashi, Y. Nishida and S. Kida, Bull. Chem. Soc. Jpn., 1984, 57,
2628–2633.
19 Y. C. Fann, I. Ahmed, N. J. Blackburn, J. S. Boswell, M. L.
Verkhovskaya, B. M. Hoffman and M. Wikstrom, Biochemistry, 1995,
34, 10245–10255.
49 F. Himo, L. Noodleman, M. R. A. Blomberg and P. E. M. Siegbahn,
J. Phys. Chem. A, 2002, 106, 8757–8761.
3336 | Dalton Trans., 2006, 3326–3337
This journal is
The Royal Society of Chemistry 2006
©